

Georgia **Standards of Excellence Curriculum Map**

Mathematics

GSE Geometry

"Educating Georgia's Future"

Georgia Standards of Excellence Geometry Curriculum Map						
1 st Semester		2 nd Semester				
Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	
(2 –3 weeks)	(9-10 weeks)	(3 – 4 weeks)	(6 – 7 weeks)	(4 – 5 weeks)	(4-5 weeks)	
Transformations in the	Similarity,	Right Triangle	Circles and Volume	Geometric and	Applications of	
Coordinate Plane	Congruence, and	Trigonometry		Algebraic Connections	Probability	
	Proofs					
MCC9-12.G.CO.1	MCC9-12.G.SRT.1	MCC9-12.G.SRT.6	MCC9-12.G.C.1	MCC9-12.G.MG.1	MCC9-12.S.CP.1	
MCC9-12.G.CO.2 MCC9-	MCC9-12.G.SRT.2	MCC9-12.G.SRT.7	MCC9-12.G.C.2	MCC9-12.G.MG.2	MCC9-12.S.CP.2	
12.G.CO.3 MCC9-	MCC9-12.G.SRT.3	MCC9-12.G.SRT.8	MCC9-12.G.C.3	MCC9-12.G.MG.3	MCC9-12.S.CP.3	
12.G.CO.4 MCC9-	MCC9-12.G.SRT.4		MCC9-12.G.C.4	MCC9-12.G.GPE.1	MCC9-12.S.CP.4	
12.G.CO.5	MCC9-12.G.SRT.5		MCC9-12.G.C.5	MCC9-12.G.GPE.4	MCC9-12.S.CP.5	
	MCC9-12.G.CO.6		MCC9-12.G.GMD.1	MCC9-12.G.GPE.5	MCC9-12.S.CP.6	
	MCC9-12.G.CO.7		MCC9-12.G.GMD.2	MCC9-12.G.GPE.6	MCC9-12.S.CP.7	
	MCC9-12.G.CO.8		MCC9-12.G.GMD.3	MCC9-12.G.GPE.7		
	MCC9-12.G.CO.9		MCC9-12.G.GMD.4			
	MCC9-12.G.CO.10					
	MCC9-12.G.CO.11					
	MCC9-12.G.CO.12					
	MCC9-12.G.CO.13					

These units were written to build upon concepts from prior units, so later units contain tasks that depend upon the concepts addressed in earlier units.

All units will include the Mathematical Practices and indicate skills to maintain.

*Revised standards indicated in bold red font.

NOTE: Mathematical standards are interwoven and should be addressed throughout the year in as many different units and tasks as possible in order to stress the natural connections that exist among mathematical topics. Grade 9-12 Key:

Number and Quantity Strand: RN = The Real Number System, Q = Quantities, CN = Complex Number System, VM = Vector and Matrix Quantities

Algebra Strand: SSE = Seeing Structure in Expressions, APR = Arithmetic with Polynomial and Rational Expressions, CED = Creating Equations, REI = Reasoning with Equations and Inequalities

Functions Strand: IF = Interpreting Functions, LE = Linear and Exponential Models, BF = Building Functions, TF = Trigonometric Functions

Geometry Strand: CO = Congruence, SRT = Similarity, Right Triangles, and Trigonometry, C = Circles, GPE = Expressing Geometric Properties with Equations, GMD = Geometric Measurement and Dimension, MG = Modeling with Geometry

Statistics and Probability Strand: ID = Interpreting Categorical and Quantitative Data, IC = Making Inferences and Justifying Conclusions, CP = Conditional Probability and the Rules of Probability, MD = Using Probability to Make Decisions

Georgia Standards of Excellence Geometry Expanded Curriculum Map – 1 st Semester						
Standards for Mathematical Practice 1 Make sense of problems and persevere in solving them. 5 Use appropriate tools strategically.						
2 Reason abstractly and quantitatively.	6 Attend to precision.					
3 Construct viable arguments and critique the reasoning of others						
4 Model with mathematics.	8 Look for and express regularity in repeated reasoning.					
1 st Semester						
Unit 1	Unit 2	Unit 3				
Transformations in the Coordinate Plane	Similarity, Congruence, and Proofs	Right Triangle Trigonometry				
Experiment with transformations in the plane MCC9-12.G.CO.1 Know precise definitions of angle, circle,	<u>Understand similarity in terms of similarity</u> <u>transformations</u>	Define trigonometric ratios and solve problems involving right triangles				
perpendicular line, parallel line, and line segment, based on the	MCC9-12.G.SRT.1 Verify experimentally the properties of	MCC9-12.G.SRT.6 Understand that by similarity, side ratios				
undefined notions of point, line, distance along a line, and	dilations given by a center and a scale factor.	in right triangles are properties of the angles in the triangle,				
distance around a circular arc.	a. The dilation of a line not passing through the center of	leading to definitions of trigonometric ratios for acute angles.				
MCC9-12.G.CO.2 Represent transformations in the plane	the dilation results in a parallel line and leaves a line	MCC9-12.G.SRT.7 Explain and use the relationship between				
using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as	passing through the center unchanged.b. The dilation of a line segment is longer or shorter	the sine and cosine of complementary angles. MCC9-12.G.SRT.8 Use trigonometric ratios and the				
inputs and give other points as outputs. Compare	according to the ratio given by the scale factor.	Pythagorean Theorem to solve right triangles in applied				
transformations that preserve distance and angle to those that	MCC9-12.G.SRT.2 Given two figures, use the definition of	problems.				
do not	similarity in terms of similarity transformations to decide if	proceedings				
(e.g., translation versus horizontal stretch).	they are similar; explain, using similarity transformations,					
MCC9-12.G.CO.3 Given a rectangle, parallelogram,	the meaning of similarity for triangles as the equality of all					
trapezoid, or regular polygon, describe the rotations and	corresponding pairs of angles and the proportionality of all					
reflections that carry it onto itself.	corresponding pairs of sides.					
MCC9-12.G.CO.4 Develop definitions of rotations,	MCC9-12.G.SRT.3 Use the properties of similarity					
reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.	transformations to establish the AA criterion for two triangles to be similar.					
MCC9-12.G.CO.5 Given a geometric figure and a rotation,	Prove theorems involving similarity					
reflection, or translation, draw the transformed figure using,	MCC9-12.G.SRT.4 Prove theorems about triangles.					
e.g., graph paper, tracing paper, or geometry software. Specify	Theorems include: a line parallel to one side of a triangle					
a sequence of transformations that will carry a given figure	divides the other two proportionally, (and its converse); the					
onto another.	Pythagorean Theorem using triangle similarity.					
	MCC9-12.G.SRT.5 Use congruence and similarity criteria for					
	triangles to solve problems and to prove relationships in					
	geometric figures.					
	Understand congruence in terms of rigid motions MCC9-12.G.CO.6 Use geometric descriptions of rigid					
	motions to transform figures and to predict the effect of a given					
	rigid motion on a given figure; given two figures, use the					
	definition of congruence in terms of rigid motions to decide if					
	they are congruent.					
	MCC9-12.G.CO.7 Use the definition of congruence in terms					
	of rigid motions to show that two triangles are congruent if and					
	only if corresponding pairs of sides and corresponding pairs of					
	angles are congruent.					
	MCC9-12.G.CO.8 Explain how the criteria for triangle					

congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions. (Extend to include HL and AAS.)

Prove geometric theorems

MCC9-12.G.CO.9 Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.

MCC9-12.G.CO.10 Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180 degrees; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.

MCC9-12.G.CO.11 Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.

Make geometric constructions

MCC9-12.G.CO.12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.

MCC9-12.G.CO.13 Construct an equilateral triangle, a square, and a regular hexagon, each inscribed in a circle.

Georgia Department of Education						
Georgia Standards of Excellence Geometry Expanded Curriculum Map – 2 nd Semester						
Standards for Mathematical Practice						
1 Make sense of problems and persevere in solving them.	5 Use appropriate tools strategic	cally.				
2 Reason abstractly and quantitatively.	6 Attend to precision.					
3 Construct viable arguments and critique the reasoning of others	s. 7 Look for and make use of stru	7 Look for and make use of structure.				
4 Model with mathematics.	8 Look for and express regulari	ty in repeated reasoning.				
	2 nd Semester					
Unit 4	Unit 5	Unit 6				
Circles and Volume	Geometric and Algebraic Connections	Applications of Probability				
Understand and apply theorems about circles	Apply geometric concepts in modeling situations	Understand independence and conditional probability and				
MCC9-12.G.C.1 Understand that all circles are similar.	MCC9-12.G.MG.1 Use geometric shapes, their measures, and	use them to interpret data				
MCC9-12.G.C.2 Identify and describe relationships among	their properties to describe objects	MCC9-12.S.CP.1 Describe categories of events as subsets of				
inscribed angles, radii, chords, tangents, and secants.	(e.g., modeling a tree trunk or a human torso as a cylinder).	a sample space using unions, intersections, or complements				
Include the relationship between central, inscribed, and	MCC9-12.G.MG.2 Apply concepts of density based on area	of other events (or, and, not).				
circumscribed angles; inscribed angles on a diameter are	and volume in modeling situations	MCC9-12.S.CP.2 Understand that if two events A and B				
right angles; the radius of a circle is perpendicular to the	(e.g., persons per square mile, BTUs per cubic foot).	are independent, the probability of A and B occurring				
tangent where the radius intersects the circle.	MCC9-12.G.MG.3 Apply geometric methods to solve design	together is the product of their probabilities, and that if the				
MCC9-12.G.C.3 Construct the inscribed and circumscribed	problems (e.g., designing an object or structure to satisfy	probability of two events A and B occurring together is the				
circles of a triangle, and prove properties of angles for a	physical constraints or minimize cost; working with	product of their probabilities, the two events are				
quadrilateral inscribed in a circle.	typographic grid systems based on ratios).	independent.				
MCC9-12.G.C.4 Construct a tangent line from a point outside	Translate between the geometric description and the	MCC9-12.S.CP.3 Understand the conditional probability of				
a given circle to the circle.	equation for a conic section	A given B as P (A and B)/P(B). Interpret independence of				
Find arc lengths and areas of sectors of circles	MCC9-12.G.GPE.1 Derive the equation of a circle of given	A and B in terms of conditional probability; that is the				
MCC9-12.G.C.5 Derive using similarity the fact that the	center and radius using the Pythagorean Theorem; complete	conditional probability of A given B is the same as the				
length of the arc intercepted by an angle is proportional to the	the square to find the center and radius of a circle given by an	probability of A and the conditional probability of B given				
radius, and define the radian measure of the angle as the	equation.	A is the same as the probability of B.				
constant of proportionality; derive the formula for the area of a	Use coordinates to prove simple geometric theorems	MCC9-12.S.CP.4 Construct and interpret two-way				
sector.	<u>algebraically</u>	frequency tables of data when two categories are associated				
Explain volume formulas and use them to solve problems	MCC9-12.G.GPE.4 Use coordinates to prove simple	with each object being classified. Use the two-way table as a				
MCC9-12.G.GMD.1 Give informal arguments for	geometric theorems algebraically. For example, prove or	sample space to decide if events are independent and to				
geometric formulas.	disprove that a figure defined by four given points in the	approximate conditional probabilities. For example, use				
a. Give informal arguments for the formulas of the	coordinate plane is a rectangle; prove or disprove that the	collected data from a random sample of students in your				
circumference of a circle and area of a circle using	point $(1, \sqrt{3})$ lies on the circle centered at the origin and	school on their favorite subject among math, science, and				
dissection arguments and informal limit arguments.	containing the point $(0,2)$.	English. Estimate the probability that a randomly selected				
b. Give informal arguments for the formula of the	(Focus on quadrilaterals, right triangles, and circles.)	student from your school will favor science given that the				
volume of a cylinder, pyramid, and cone using	MCC9-12.G.GPE.5 Prove the slope criteria for parallel and	student is in tenth grade. Do the same for other subjects and				

MCC9-12.G.GPE.5 Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).

MCC9-12.G.GPE.6 Find the point on a directed line segment between two given points that partitions the segment in a given ratio.

MCC9-12.G.GPE.7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.

MCC9-12.S.CP.5 Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.

compare the results.

Use the rules of probability to compute probabilities of compound events in a uniform probability model

MCC9-12.S.CP.6 Find the conditional probability of A given B as the fraction of B's outcomes that also belong to

Cavalieri's principle. MCC9-12.G.GMD.2 Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures. MCC9-12.G.GMD.3 Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.

Visualize relationships between two-dimensional and three-dimensional objects

MCC9-12 G GMD 4 Identify the shapes of two-dimensional

MCC9-12.G.GMD.4 Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-

dimensional objects generated by rotations of two-dimensional objects.	A, and interpret the answer in context. MCC9-12.S.CP.7 Apply the Addition Rule, P(A or B) =
	P(A) + P(B) - P(A and B), and interpret the answers in
	context.