

Visualizing Square Roots

Taken from http://www.mathedpage.org/geometry-labs/gl/gl-9.pdf

- 1. In the above figure, what are the following measures?
 - a. The area of one of the small squares
 - b. The side of one of the small squares
 - c. The area of the large square
 - d. The side of the large square
- 2. Explain, using the answers to Problem 1, why $\sqrt{40} = 2\sqrt{10}$.
- 3. On the geoboard or dot paper, create a figure to show that $\sqrt{8} = 2\sqrt{2}$, $\sqrt{18} = 3\sqrt{2}$, $\sqrt{32} = 4\sqrt{2}$, and $\sqrt{50} = 5\sqrt{2}$.
- **4.** Repeat Problem 3 for $\sqrt{20} = 2\sqrt{5}$ and so on.

In the figure on the previous page, and in the figures you made in Problems 3 and 4, a larger square is divided up into a square number of squares. This is the basic idea for writing square roots in simple radical form. The figure need not be made on dot paper. For example, consider $\sqrt{147}$. Since $147 = 3 \cdot 49$, and since 49 is a square number, we can divide a square of area 147 into 49 squares, each of area 3:

If you pay attention to the sides of the figure, you will see that $\sqrt{147} = 7\sqrt{3}$. Of course, drawing the figure is not necessary.

- 5. Write the following in simple radical form.
 - a. $\sqrt{12}$
 - **b.** $\sqrt{45}$
 - c. $\sqrt{24}$
 - **d.** $\sqrt{32}$
 - e. √75
 - **f.** $\sqrt{98}$

Discussion

- **A.** Draw a figure that illustrates $4\sqrt{5}$ as the square root of a number.
- **B.** Explain how to use a number's greatest square factor to write the square root of that number in simple radical form. Explain how this relates to the figure above.