
Count the Quilt Blocks

Paul and Tom were working on predicting the number of quilt blocks (unit squares) in the following pattern:

1. Use the above figures, complete the following table:

Fig. 4

Figure Number	1	2	3	4	5	6	7
Number of Unit Squares	5						

2. Is the relation between the "Figure Number" and the "Number of Unit Squares" a function? Why or Why not?

3.	Write	the first se	even terms	of the sequ	ence for the	number of unit	squares.	
4.	What	kind of se	quence is	this? Justify	your reasoni	ng.		
5.			e first term lues of a₁ a	•	ence and r re	presents the c	ommon ratio,	
6.	Write	the " Rec u	ırsive Forı	mula " to find	the n th term	a _n for this seq	Jence.	_
7.	Com	olete the fo	ollowing tal	ole:				_
	(n)	1	2	3	4	5	6	7
nit	(a _n)	5						
nit ed f	(a _n)							
me		5*1						

No. of unit					
squares ((a _n)	5			
No. of unit	(a _n)	5*1			
No. of unit	a _n)				
(in exponential form in terms of the common ra	l of				

Fig No.

Observe the conversation between Paul and Tom:

	Paul: This one works a lot like the last quilt pattern to me. The only difference is that the pattern is doubling, so I knew it was exponential. I thought that it starts with 5 blocks and doubles, so the n^{th} term of the sequence is $a_n = 5(2)^n$
	Tom: I don't know about that. I agree that it is an exponential function—just look at that growth pattern. However, I used the numbers in the table and got $a_n = 5(2)^{n-1}$.
8.	What is different about the process that Paul and Tom used to come to create their equations?
9.	Who is right? Why? Write the correct explicit formula to find the n th term a _n of the geometric sequence.
10	Use the above explicit formula, find the number of unit squares in Fig. 8, Fig.12, and Fig.15?
	Number of squares in Fig.8, a ₈ =
	Number of squares in Fig.12, a ₁₂ =
	Number of squares in Fig.15, a ₁₅ =
11	.Which figure will have 327,680 unit squares? Explain your reasoning.

12. Complete the following table and graph the sequence:

Figure Number (n)	1	2	3	4	5	6	7	8
Number of unit squares (a _n)								

640		_								
640										
60 0										
560-										
520							 			
480										
440										
400										
360										
320-										
280										
240										
200										
16 0-										
120										
80-										
40										
	i.		3		6	9	; 9) 1	0 1	11

13. Should we connect the points on the graph? Explain your reason	ing.
14. Use technology, derive the exponential function f(x) for this sec	ղuence.
15. What can you conclude about the recursive formula, explicit form function form of this geometric sequence?	ula, and the
16.Write a real life example for a geometric sequence and express it exponential function.	as an
Practice problems:	

Practice problems:

17. http://www.regentsprep.org/Regents/math/ALGEBRA/AE7/ExpDecayP.htm