

Biology Frameworks Curriculum Pacing Guide Stability and Change in Populations Over Time

Crosscutting Concepts: Cause and Effect; Stability and Change; Patterns

Topics: Evolution of Viruses; Viruses vs Bacteria; Resistance; Genetic Drift; Speciation; Patterns in Biodiversity; Evidence of Evolution

6-week Instructional Segment

Anchoring	GSE	Sample	Disciplinary Core Ideas	Science and	Instructional Notes
Phenomenon		Instructional		Engineering	
		Segment		Practices	
Antibiotics do not	SB1a	Use the Segment	By the end of grade 12	Obtaining,	See Teacher Notes
work on viruses	SB4a	Topics with Focus		evaluating,	
and may become	SB4c	Phenomena in	LS4A: Evidence of Common Ancestry and	&	By the end of this unit,
less effective on	SB5a	Teacher Notes for	Diversity	communicati	students are using the
bacteria over	SB5e	more clarification.	• Genetic information, like the fossil record,	ng	following language in their
time.	SB6a		provides evidence of evolution.	information	speaking and writing
	SB6b	Topics that have links	• DNA sequences vary among species, but there		during EXPLAIN or
Resources:	SB6c	will connect to a	are many overlaps.	Constructing	ELABORATE:
CK12: This is an	SB6d	sample lesson.	• Common ancestry is derivable from the	explanations	• Structure and function
article titled	SB6e		similarities and differences in amino acid		• Cause, effect, and
<u>"Evolution of</u>		Evolution of Viruses	sequences and from anatomical and	Engaging in	mechanism
<u>Resistant</u>		Viruses change over	embryological evidence.	argument	• Stability and change
Bacteria" that		time in response to	LS4B: Natural Selection	from	• Cells
emphasizes the		selection pressures	• Natural selection occurs only if there is both:	evidence	Organelles
evolution of		from vaccines.	(1) variation in the genetic information between		• System
Superbugs			organisms in a population	Analyzing	Homeostasis
		Viruses vs Bacteria	(2) variation in the expression of that genetic	and	• Clades
By the end of		Viruses are	information—trait variation—that leads to	interpreting	Endosymbiosis
this unit,		structurally and	differences in performance among individuals	data	• Organism
students will		functionally different	• Traits that positively affect survival are more		• Virus
explain the		from living	likely to be reproduced and are more common	Developing	Biodiversity
phenomenon		organisms.	in the population.	and using	Population
using the			LS4C: Adaptation	models	Adaptation
following			• Natural selection is the result of four factors:		Evolution
concepts:			(1) the potential for a species to increase in		Speciation

Georgia Department of Education

July 11, 2017

Antibiotics target	Antibiotic	number	• Evidence of evolution
bacteria, which	Resistance	(2) the genetic variation of individuals in a	• Natural selection
are prokaryotic	Random genetic	species due to mutation and sexual	• Genetic drift
cells.	variations allow for	reproduction	Biological resistance
	natural selection to	(3) competition for an environment's limited	C C
Antibiotics do not	select for existing	supply of the resources that individuals need in	
work on viruses	resistant bacteria.	order to survive and reproduce	
because they do	MRSA Stay or	(4) the ensuing proliferation of those organisms	
not contain the	MRSA Go?	that are better able to survive and reproduce in	
same structures as		that environment	
living cells.	Genetic Drift	• Natural selection leads to adaptation—to a	
	Survival may depend	population dominated by organisms that are	
Antibiotics may	solely on random	anatomically, behaviorally, and physiologically	
become less	chance.	well suited to survive and reproduce in a	
effective on	Sickle Cell and	specific environment.	
bacteria over time	Malaria	• The survival and reproduction of organisms in	
because of	Change With Me	a population that have an advantageous	
random variations		heritable trait leads to an increase in the	
that may increase	Speciation	proportion of individuals in future generations	
their fitness and	The creation of a new	that have the trait and to a decrease in the	
cause a change in	species can result	proportion of individuals that do not.	
the genetics of	from natural selection	• Adaptation also means that the distribution of	
the population	or be influenced by	traits in a population can change when	
over time.	humans.	conditions change.	
		• Changes in the physical environment have	
Viruses are	Patterns in	contributed to the expansion of some species,	
similar to bacteria	Biodiversity	the emergence of new distinct species as	
because they	Major events in time	populations diverge under different conditions,	
demonstrate	can cause major shifts	and the decline—and sometimes the	
random variations	in biodiversity.	extinction—of some species.	
that may increase		• Species become extinct because they can no	
their fitness and		longer survive and reproduce in their altered	
cause a change in		environment.	
the genetics of		• If members cannot adjust to change that is too	

Georgia Department of Education July 11, 2017

the populations	Evidence of	fast or too drastic, the opportunity for the	
over time.	Evolution	species' evolution is lost.	
	Scientists use a	LS4D: Biodiversity and Humans	
Bacteria and	variety of evidence to	• Biodiversity is increased by the formation of	
viruses can	support the theory of	new species and decreased by the loss of	
evolve different	evolution.	species.	
strains that are		• Biological extinction, being irreversible, is a	
identified through		critical factor in reducing the planet's natural	
DNA evidence.		capital.	
		National Research Council. (2012). A Framework	
		for K-12 Science Education: Practices,	
		Crosscutting Concepts, and Core Ideas.	

This instructional segment will segue into SB4 in Patterns in Living Systems by connecting the theories of evolution to modeling the classification of living organisms using cladograms and/or phylogenetic trees. Also it will connect to SB2 in Structure and Function of Molecular Genetics and SB3 in Patterns in Heredity and Selection by connecting the idea that natural selection occurs based on random genetic variations that code for traits that may increase fitness. These more fit traits can be passed to successive generations.