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a Strands of Mathematical Profi ciency 
(NRC 2001) reinforces the importance 
of mathematics teachers and their 
students using multiple representations 
when exploring mathematical ideas.

Simplifying square roots and other 
radicals is a staple of prealgebra and al-
gebra 1 courses because it is a requisite 
skill for studying many other topics in 
the high school curriculum (CCSSI 
2010; 8.EE.2). To simplify a radi-
cal expression, students must analyze 
factors of the radicand and determine 

Square Roots
A geometric approach using exact square 

manipulatives can promote an understanding of 
the algorithm that can dismantle radical expressions.

Kyle T. Schultz and Stephen F. Bismarck

“You don’t understand anything until you learn it more than one way.” 
Marvin Minsky, cognitive scientist, cofounder of the Massachusetts Institute of 

Technology (MIT ) Artifi cial Intelligence Laboratory

whether any subset of these factors 
can be simplifi ed with respect to the 
radical’s index. For example, if the 
radical represents a square root (index 
2), students determine if any of the 
radicand’s factors are perfect squares. 
If so, the radical can be written in a 
simpler form. A basic example of this 
process using the traditional algebraic 
representation is shown below.
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In developing a lesson on this topic 
for algebra 1 students, we sought to 

Square Roots

A picture is worth a thousand words. 
This statement is especially true in 
mathematics teaching and learning. 
Visual representations such as pic-
tures, diagrams, charts, and tables can 
illuminate ideas that can be elusive 
when displayed in symbolic form only. 
The prevalence of representation as a 
mathematical process in such docu-
ments as Principles and Standards for 
School Mathematics (NCTM 2000), the 
Common Core State Standards for 
Mathematics (CCSSI 2010), and the 

Radical Thoughts on Simplifying
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array. Students can see that the objects 
representing some numbers can be ar-
ranged as a square array, whereas oth-
ers cannot (see fi g. 1). These square-
forming numbers are perfect squares. 
Furthermore, students can determine 
the square root of a perfect square 
represented in this way by counting 
the number of objects along one edge 
of the square.

Similar to using an array of objects, 
students can represent perfect squares 
with an area model. The area of the 
square represents n; the square’s side 
length is 1n. Traditionally, such a 
model is used when 1n has a whole-
number value. This model is viable 
because it can be partitioned into 
a square-shaped array of smaller 
1 unit × 1 unit squares of area 1 unit2. 

A nonperfect square number such 
as 7, however, cannot be partitioned 
in this way. Although one can identify 
four 1 unit × 1 unit squares within the 

address a variety of learning styles. 
Although we developed verbal and 
written strategies to supplement 
teaching the algebraic representation, 
we struggled initially to determine 
a way of representing a visual or 
geometric approach for simplifying 
radicals. After examining geometric 
representations of perfect square num-
bers (1, 4, 9, 16, . . .), we developed a 
way to think about more complicated 
examples (e.g., 18, 45, 72), creating 
tactile and virtual manipulatives that 
enabled students to explore radical 
simplifi cation and other concepts.

We wanted our students to initially 
use this representation and accompa-
nying manipulatives to demonstrate 
their thinking about radicals and their 
simplifi cation. Through repeated use 
of the representation with concrete 
examples and through a growing 
familiarity with the concept of square 
root, our students should become ac-
customed to using the representation 
as a tool when thinking about more 
formal and generalizable examples. In 
this way, the representation will evolve 
from a tool of thinking to a tool for
thinking (Fosnot and Dolk 2002). An 
analogy would be how young students 
initially use numbers to symbolize col-
lections of objects (8 apples, 3 bears, 
7 days, and so on). Eventually, how-
ever, the numbers themselves become 
tools for carrying out more abstract 
purposes (2 + 9 = 11).

We share our visual representation 
for simplifying radicals and our initial 
efforts to use this representation with 
middle school and high school math-
ematics students as well as prospective 
mathematics teachers.

PERFECT SQUARE NUMBERS
To help students understand the 
concept of perfect square or square 
numbers, teachers can challenge 
students to arrange a collection of 
n objects (counters, blocks, pennies, 
beans, and so on) in a square-shaped 

square, the excess space within the 
square cannot be partitioned further 
in this way (see fi g. 2). At this point, a 
discussion of an area-based geometric 
representation of irrational numbers, 
such as 17, typically falls apart. By 
shifting our focus away from squares 
with rational side lengths (such as 
1 unit), however, we have found a way 
to represent the process of simplifying 
more complicated radicals. This sim-
plifi cation illuminates the underlying 
math of the algebraic representation 
and algorithm that are traditionally 
taught to and used by students. 

AN AREA-BASED GEOMETRIC 
REPRESENTATION
To illustrate our area-based geometric 
representation of simplifying radicals, 
consider 318. Similar to the square 
with area 7 square units, a square 
with area 18 square units cannot be 
partitioned into a square-shaped array 

Fig. 1 Blue counters representing 9 can be arranged in a square array; pink counters 
representing 8 cannot. Three counters, seen along any one of the square’s four sides, 
represent the square root of 9.

Fig. 2 A square with an area of 9 unit2 can be partitioned into unit squares, but a 
square with an area of 7 units2 cannot.
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of unit squares (see fi g. 3a). Therefore, 
18 is not a perfect square. This square, 
nevertheless, can still be partitioned 
into a square-shaped array of smaller 
squares, provided that the area of 
these smaller squares is rational even 
if the side lengths are irrational. In 
this case, the square with an area of 
18 square units can be partitioned 
into 9 squares, each with an area of 
2 square units (see fi g. 3c). This new 
confi guration provides an alternative 
way to calculate 318 by examining the 
length of the side of a square whose 
area is 18 square units. Notice that 
the side length of the large square is 
equivalent to three side lengths of 
one smaller square. The area of each 
small square is 2 square units, so the 
side length of each small square is 12 
units. Thus,

318 = 312.

As a way to connect this model 
to the numeric solution above, the 
search for a perfect-square factor of 
18 coincides with identifying how 
to partition the square into smaller 
squares with whole-number areas. The 
expression 49 • 2 is equivalent to the 
length of the side of a square array of 
9 squares each with an area of 2 square 
units. In this case, 12 is the length of 
a partitioned side of the large square 
into the nine small squares. 

Figure 4 displays a similar approach
used to simplify 375. Increasing the 
squared factor of the radicand in-
creases the number of small squares 
in the corresponding area model. As a 
consequence, teachers should carefully 
select the examples they use in class 
because some fi gures may become 
rather intricate. 

THE GEOMETRIC 
REPRESENTATION IN USE
We were eager to have students try to 
simplify square roots using an area-
based geometric representation. As 

we prepared activities, we considered 
the prerequisite knowledge needed to 
use the concrete manipulatives we had 
created and to transition eventually to 
abstract procedures. The key concept
is the relationship between the nu-
merical values of a square’s area and 
side length. To ensure that students 
fi rmly grasped this geometric connec-
tion, we spent time at the start of the 
activities discussing this relationship.

In considering the best way for 
students to explore the geometric rep-
resentation of square roots, Stephen 
Bismarck created a set of square ma-
nipulatives with whole number areas, 
dubbed exact squares, which students 
could arrange in confi gurations like 
those in fi gures 3 and 4. Students 
could select square tiles of a particular 
size to attempt to create squares of a 
larger area, physically modeling the 
process of fi nding a perfect square 
factor while sitting at their desks. 

In addition, we created activities 
designed to help students connect 

their use of the geometric representa-
tion to the corresponding symbolic 
representation. We wanted to see 
how students at different stages of 
mathematical study would react to 
the concept presented through the 
manipulatives. We chose to use the 
Exact Squares activity with middle 
school students who had not been 
introduced to the symbolic process for 
simplifying square roots, precalculus 
high school students, and third-year 
preservice mathematics teachers. By 
working with students at various 
levels, we could focus on how students 
connected the geometric model to the 
traditional algorithm. 

Each Exact Squares activity lasted 
about ninety minutes, comprising 
one class for the high school and 
college students and two classes for 
the middle school students. Students 
worked in small groups (three to four) 
and used activity packets and one set 
of precut exact squares (1 cm2 through 
10 cm2). 

 (a) (b) (c)

        (a) (b) (c)

Fig. 3 A square with an area of 18 units2 and small squares with a rational area of 
2 units2 help students see why 318 = 312.

Fig. 4 Starting with a square with an area of 75 units2, 475 is simplifi ed using smaller 
squares, each with an area of 3 units2.
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High School and College Students
The high school and college students 
began each square root simplifi cation 
task by fi rst using the traditional algo-
rithm and then making the geometric 
model fi t their calculations. Although 
this method inhibited the exploration
and discovery process that was in-
tended, the students could still make 
connections between their knowledge 
of the procedure and the geometric 
model. For example, one task asked the 
students to describe the geometric sig-
nifi cance of each quantity used in the 
symbolic process (see fi g. 5). After us-
ing the manipulatives in the geometric 
context, one high school student used a 
rough geometric sketch to confi rm her 
numerical work (see fi g. 6).

Middle School Students
The middle school students, with 
no prior knowledge of the tradi-
tional algorithm, exhibited interesting 
ways of investigating the geometric 
model. First, they resorted to guess-
ing or playing with the exact square 
model as they attempted to fi ll in the 

larger square. Specifi cally, they tried 
tiles with area 4 or 5 before realizing 
that four squares with area of 3 cm2

fi lled the space of 12 cm2. Next, they 
focused on the exact squares that cor-
responded to the factors of 18 using 
the large square. At fi rst, they consid-
ered “3s since there will be 6 of them,” 
as one student explained, then moved 
on to try 5s, eventually fi nding 20 and 
then 2 × 9. They then noted that the 
number of exact squares was always 
a square number. For example, with 
348, students started with 8 × 6:

[Modeling 348]
Jack: It should be 8 six times. No, 

6 eight times. I’m looking at what 
makes 48 because that is how it 
worked with the rest of them.

Olivia: Four? 
Jack: It’s not 4.
Olivia: You sure? Why isn’t it?
Jack: Let’s go to 2. Well, does 7 go 

into it? No, that’s 49.
Olivia: No, 7 shouldn’t be.
Jack: Let’s do 2 then.
Olivia: Oh, it’s 3.

Jack: Oh, you want to know why 3 
fi ts? ’Cause there are 16 of them.

Teacher: What do you notice about 
the amount of exact squares you 
use? Look throughout the other 
examples, too.

Jack: Oh, they’re all square numbers.
Olivia: Yeah, they’re square numbers. 

That’s cool.

These students reasoned with the 
geometric model; looked for patterns;
and, beginning with the 318 task, 
started purposefully looking for fac-
tors. This is evident through their 
initial choice of 6 exact squares of area 
3 cm2 and assertion that exact squares 
of area 5 cm2 should not work. This 
process of fi nding factors continued 
and was clearly articulated by one stu-
dent as the group worked on simplify-
ing 348. By the end of the activity, 
they made connections between the 
simplifi cation of square roots, the fac-
tors of the radicand, and the presence 
of square numbers. 

REFINING THE LESSON
Although the initial work with 
students using this representation is 
promising, we have more work to do, 
both in terms of developing activities 
that allow students to constructively 
work on more sophisticated radicals 
and in refi ning the materials they can 
use, such as manipulatives.

Manipulatives
One issue we encountered involved 
the precision of the exact squares 
manipulatives. Early on, they were cre-
ated from foam. After we fi eld-tested 
the foam tiles during work with the 
preservice teachers, we found the tiles’ 
degree of accuracy to be insuffi cient. 
For the next round, the exact squares 
were laminated. These squares were 
more accurate than the foam tiles but 
still contained enough error to provide 
a false positive (i.e., four 5 cm2 squares 
in simplifying 318).

Fig. 6 Various representations of 318 help students connect the models to the process 
of simplifying.

 (a) (b)

Fig. 5 Casey, a prospective teacher, describes the geometric signifi cance of each 
quantity used in the symbolic algorithm for simplifying 412.
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The handmade tiles had irrational 
side lengths, causing a varying degree 
of inaccuracy in terms of both size and 
shape. These small or unnoticeable 
inaccuracies became apparent when 
multiple tiles were aligned. Although 
these inaccuracies did not interfere 
with students’ understanding, some 
were frustrated when implementing 
the procedure based on the squares. 
To minimize student confusion and 
frustration, teachers should be aware of 
this pitfall when using the tactile exact 
squares and should identify square 
roots that might provide false positives. 
To resolve this issue, we created and are 
testing a virtual version of exact squares 
using The Geometer’s Sketchpad®.

Partially Simplifi ed Radicals
When working numerically, students 
will often identify a perfect-square 

factor of the radicand that does not 
lead to a complete simplifi cation of 
the radical. For example, if students 
are simplifying 372, they may identify 
either the factor pairs of 9 × 8 or
4 × 18, leading to a partial simplifi ca-
tion: either

372 = 1918 = 318 or
372 = 14318 = 2318.

These simplifi cations can represent 
an intermediate step to a complete 
simplifi cation or, if the student does 
not see further simplifi cation, will 
mean an end to the process. Our 
geometric representation, depicted 
in fi gure 7, illustrates the pictorial 
relationship between these partial 
simplifi cations and could be used to 
illustrate the numerical connection 
between them.

Fig. 7 The expression 472 can be written a number of different ways. Connecting the exact 
square representations can help students see why only one way is completely simplifi ed. 

(a) Four 18-square-unit squares

(b) Nine 8-square-unit squares

(a) Four 18-square-unit squares
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Other Uses
We are also examining other ways in 
which squares with whole-number 
areas could be used to explore math-
ematical concepts. One idea that may 
hold promise is using exact squares to 
demonstrate and explore the converse 
of the Pythagorean theorem. Although 
most explorations of the properties 
of right triangles begin with measur-
ing the side lengths (which are then 
squared), exact squares allow the stu-
dent to examine the triangles formed 
by different combinations of squared 
side lengths (see fi g. 8).

A POWERFUL MODEL
Our experiences working with students 
as they use this geometric model to 
simplify square roots led us to be-
lieve that students are extending their 
understanding of perfect squares and 
square roots. Although it was initially 

used as a model of thinking about 
square roots and how they could be 
simplifi ed, the individual representa-
tion is not an end to the process of 
simplifying square roots. Rather, the 
geometric representation can give 
students a visual connection that can 
support their use of the traditional 
numerical method, becoming a model 
for thinking. This visual connection can 
be continuously accessed as the student 
thinks through the process needed to 
simplify square roots, as exemplifi ed by 
the student work in fi gure 6. 

Using multiple representations 
gives students opportunities to make 
connections among concepts as well as 
deepen their understanding of a single 
concept. This scenario is especially true 
in classrooms containing special needs, 
ELL, and gifted students. Currently, 
the process for simplifying square 
roots has been limited to one model, 

the numerical hunt for perfect square 
factors. The geometric model detailed 
in this article provides an alternative. 
The power created by connecting these 
representations as a path to learning 
has great potential.

REFERENCES
Common Core State Standards Initiative 

(CCSSI). 2010. Common Core State 
Standards for Mathematics. Washing-
ton, DC: National Governors Associa-
tion Center for Best Practices and the 
Council of Chief State School Offi cers. 
http://www.corestandards.org/assets/
CCSSI_Math%20Standards.pdf

Fosnot, Catherine Twomey, and Maarten 
Dolk. 2002. Young Mathematicians at 
Work: Constructing Fractions, Decimals, 
and Percents. Portsmouth, NH: Heine-
mann.

National Council of Teachers of Math-
ematics (NCTM). 2000. Principles 
and Standards for School Mathematics. 
Reston, VA: NCTM.

National Research Council (NRC). 2001. 
Adding It Up: Helping Children Learn 
Mathematics, edited by Jeremy Kil-
patrick, Jane Swafford, and Bradford 
Findell. Washington, DC: National 
Academies Press.

Kyle T. Schultz, schultkt@
jmu.edu, a former high 
school teacher and cur-
rently an assistant pro-
fessor of mathematics edu-
cation at James Madison 
University in Harrisonburg, 
Virginia, is interested in ex-
amining new and different 

ways of thinking about the secondary math-
ematics curriculum. Stephen F. Bismarck,
sbismarck@uscupstate.edu, an assistant 
professor of middle and secondary math-
ematics education at the University of 
South Carolina Upstate in Spartanburg, is 
interested in appropriate uses of technology 
in the mathematics classroom, mathemati-
cal knowledge for teaching, and professional 
development for in-service teachers.

Fig. 8 When the areas of the squares on two sides of a triangle sum to the area of the 
square on the third side, a right triangle is formed.


