

Georgia Standards of Excellence Curriculum Map

Mathematics

Accelerated GSE Pre-Calculus

Richard Woods, Georgia's School Superintendent "Educating Georgia's Future"

Accelerated GSE Pre-Calculus Curriculum Map								
1st Semester			2 nd Semester					
Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8	Unit 9
(3-4 weeks)	(3 – 4 weeks)	(3-4 weeks)	(2-3 weeks)	(4-5 weeks)	(2-3 weeks)	(4-5 weeks)	(3-4 weeks)	(3-4 weeks)
Introduction to	Trigonometric	Trigonometry	Trigonometric	Matrices	Conics	<u>Vectors</u>	Inferences &	Probability
Trigonometric	Functions	of General	Identities				Conclusions	
Functions	1	Triangles					from Data	
MGSE9-12.F.IF.4	MCC9-12.F.BF.4	CC.9-12.G.SRTT.9	MCC9-12.F.TF.9	MCC9-12.N.VM.6	MCC9-12.G.GPE.2	MCC9-12.N.CN.3	MGSE9-12.S.ID.2	MCC9-12.S.CP.8
MGSE9-12.F.IF.7	MCC9-12.F.BF.4d	CC.9-12.G.SRTT.10	1	MCC9-12.N.VM.7	MCC9-12.G.GPE.3	MCC9-12.N.CN.4	MGSE9-12.S.ID.4	MCC9-12.S.CP.9
MGSE9-12.F.IF.7e	MCC9-12.F.TF.3	CC.9-12.G.SRTT.11		MCC9-12.N.VM.8	MCC9-12.A.REI.7	MCC9-12.N.CN.5	MGSE9-12.S.IC.1	MCC9-12.S.MD.1
MGSE9-12.F.TF.1	MCC9-12.F.TF.4		1	MCC9-12.N.VM.9		MCC9-12.N.CN.6	MGSE9-12.S.IC.2	MCC9-12.S.MD.2
MGSE9-12.F.TF.2	MCC9-12.F.TF.6		1	MCC9-12.N.VM.10		MCC9-12.N.VM.1	MGSE9-12.S.IC.3	MCC9-12.S.MD.3
MGSE9-12.F.TF.5	MCC9-12.F.TF.7		1	MCC9-12.N.VM.12		MCC9-12.N.VM.2	MGSE9-12.S.IC.4	MCC9-12.S.MD.4
MGSE9-12.F.TF.8	1		1	MCC9-12.A.REI.8		MCC9-12.N.VM.3	MGSE9-12.S.IC.5	MCC9-12.S.MD.5
ļ	1		1	MCC9-12.A.REI.9		MCC9-12.N.VM4	MGSE9-12.S.IC.6	MCC9-12.S.MD.5a
ļ	1		1			MCC9-12.N.VM4a		MCC9-12.S.MD.5b
ļ	1		1			MCC9-12.N.VM4b		MCC9-12.S.MD.6
ļ	1		1			MCC9-12.N.VM4c		MCC9-12.S.MD.7
ļ	1		1			MCC9-12.N.VM.5		!
ļ	1		1			MCC9-12.N.VM.5a		!
ļ	1		1			MCC9-12.N.VM.5b		!
	1		1			MCC9-12.N.VM.11		!
	TDI :	20 1 21		1			1 1 11 11	

These units were written to build upon concepts from prior units, so later units contain tasks that depend upon the concepts addressed in earlier units.

All units will include the Mathematical Practices and indicate skills to maintain.

NOTE: Mathematical standards are interwoven and should be addressed throughout the year in as many different units and tasks as possible in order to stress the natural connections that exist among mathematical topics. Grade 9-12 Key:

Number and Quantity Strand: RN = The Real Number System, Q = Quantities, CN = Complex Number System, VM = Vector and Matrix Quantities

Algebra Strand: SSE = Seeing Structure in Expressions, APR = Arithmetic with Polynomial and Rational Expressions, CED = Creating Equations, REI = Reasoning with Equations and Inequalities

Functions Strand: IF = Interpreting Functions, LE = Linear and Exponential Models, BF = Building Functions, TF = Trigonometric Functions

Geometry Strand: CO = Congruence, SRT = Similarity, Right Triangles, and Trigonometry, C = Circles, GPE = Expressing Geometric Properties with Equations, GMD = Geometric Measurement and Dimension,

MG = Modeling with Geometry

Statistics and Probability Strand: ID = Interpreting Categorical and Quantitative Data, IC = Making Inferences and Justifying Conclusions, CP = Conditional Probability and the Rules of Probability, MD = Using Probability to Make Decisions

Applemental CCE Due Colombia Ermanded Commissione Man. 1st Commission						
Accelerated GSE Pre-Calculus Expanded Curriculum Map – 1 st Semester Standards for Mathematical Practice						
1 M-1						
1 Make sense of problems and persevere in solv	ing them.	5 Use appropriate tools strategically.				
2 Reason abstractly and quantitatively.		6 Attend to precision.				
3 Construct viable arguments and critique the re	asoning of others.	7 Look for and make use of structure.				
4 Model with mathematics.	Ant O	8 Look for and express regularity in repeated rea	asoning.			
	1 st Sei	mester				
Unit 1	Unit 2	Unit 3	Unit 4			
Introduction to Trigonometric	Trigonometric Functions	Trigonometry of General Triangles	Trigonometric Identities			
Functions	Trigonometric Functions	Trigonometry of General Triangles	Trigonometrie lucitaties			
Interpret functions that arise in applications in	Build new functions from existing functions	Apply trigonometry to general triangles	Prove and apply trigonometric identities			
terms of the context	MGSE9-12.F.BF.4 Find inverse functions.	MGSE9-12.G.SRT.9 Derive the formula A =	MGSE9-12.F.TF.9 Prove addition, subtraction,			
MGSE9-12.F.IF.4 Using tables, graphs, and verbal	MGSE9-12.F.BF.4d Produce an invertible function	(1/2)ab sin(C) for the area of a triangle by drawing	double and half-angle formulas for sine, cosine, and			
descriptions, interpret the key characteristics of a	from a non-invertible function by restricting the	an auxiliary line from a vertex perpendicular to the	tangent and use them to solve problems.			
function which models the relationship between two	domain.	opposite side.	tangent and use them to solve problems.			
quantities. Sketch a graph showing key features	MGSE9-12.F.TF.3 Use special triangles to	MGSE9-12.G.SRT.10 Prove the Laws of Sines and				
including: intercepts; interval where the function is	determine geometrically the values of sine, cosine,	Cosines and use them to solve problems.				
increasing, decreasing, positive, or negative; relative	tangent for $\pi/3$, $\pi/4$ and $\pi/6$, and use the unit circle	MGSE9-12.G.SRT.11 Understand and apply the				
maximums and minimums; symmetries; end	to express the values of sine, cosine, and tangent for	Law of Sines and the Law of Cosines to find				
behavior; and periodicity.	π - x, π + x, and 2π - x in terms of their values for x,	unknown measurements in right and non-right				
Analyze functions using different representations MGSE9-12.F.IF.7 Graph functions expressed	where x is any real number. MGSE9-12.F.TF.4 Use the unit circle to explain	triangles (e.g., surveying problems, resultant forces).				
algebraically and show key features of the graph	1					
both by hand and by using technology.	symmetry (odd and even) and periodicity of trigonometric functions.					
MGSE9-12.F.IF.7e Graph exponential and	MGSE9-12.F.TF.6 Understand that restricting a					
logarithmic functions, showing intercepts and end	trigonometric function to a domain on which it is					
behavior, and trigonometric functions, showing	always increasing or always decreasing allows its					
period, midline, and amplitude.	inverse to be constructed.					
Extend the domain of trigonometric functions	MGSE9-12.F.TF.7 Use inverse functions to solve					
using the unit circle	trigonometric equations that arise in modeling					
MGSE9-12.F.TF.1 Understand radian measure of	contexts; evaluate the solutions using technology,					
an angle as the length of the arc on the unit circle	and interpret them in terms of the context.					
subtended by the angle.						
MGSE9-12.F.TF.2 Explain how the unit circle in						
the coordinate plane enables the extension of						
trigonometric functions to all real numbers, interpreted as radian measures of angles traversed						
counterclockwise around the unit circle.						
Model periodic phenomena with trigonometric						
functions						
MGSE9-12.F.TF.5 Choose trigonometric functions						
to model periodic phenomena with specified						
amplitude, frequency, and midline.						
Prove and apply trigonometric identities						
MGSE9-12.F.TF.8 Prove the Pythagorean identity						
$(\sin A)^2 + (\cos A)^2 = 1$ and use it to find sin A, cos A,						
or tan A, given sin A, cos A, or tan A, and the						
quadrant of the angle.						
Accelerated CSF Pro Calculus Expanded Curriculum Man 2nd Samestar						
Accelerated GSE Pre-Calculus Expanded Curriculum Map – 2 nd Semester						
Standards for Mathematical Practice						

1 Make sense of problems and persevere in solving them.
2 Reason abstractly and quantitatively.
5 Use appropriate tools strategically.
6 Attend to precision.
7 Look for and make use of structure.

4 Model with mathematics. 8 Look for and express regularity in repeated reasoning.						
		2 nd Semester				
Unit 5	Unit 6	Unit 7	Unit 8	Unit 9		
Matrices	Conics	Vectors	Inferences & Conclusions	Probability		
	0.0 === 0.0	, , , , , , , , , , , , , , , , , , , ,	from Data			
Perform operations on matrices and	Translate between the geometric	Use properties of rational and	Summarize, represent, and interpret	Use the rules of probability to compute		
use matrices in applications	description and the equation for a	irrational numbers	data on a single count or measurement	probabilities of compound events in a		
MGSE9-12.N.VM.6 Use matrices to	conic section	MGSE9-12.N.CN.3 Find the conjugate	<u>variable</u>	uniform probability model		
represent and manipulate data, e.g.,	MGSE9-12.G.GPE.2 Derive the	of a complex number; use the conjugate	MGSE9-12.S.ID.2 Use statistics	MGSE9-12.S.CP.8 Apply the general		
transformations of vectors.	equation of a parabola given a focus and	to find the absolute value (modulus) and	appropriate to the shape of the data	Multiplication Rule in a uniform		
MGSE9-12.N.VM.7 Multiply matrices by scalars to produce new matrices.	directrix.	quotient of complex numbers. Represent complex numbers and their	distribution to compare center (median, mean) and spread (interquartile range,	probability model, $P(A \text{ and } B) = [P(A)]x[P(B A)] = [P(B)]x[P(A B)]$, and		
MGSE9-12.N.VM.8 Add, subtract, and	MGSE9-12.G.GPE.3 Derive the	operations on the complex plane	mean absolute deviation, standard	interpret the answer in terms of the		
multiply matrices of appropriate	equations of ellipses and hyperbolas	MGSE9-12.N.CN.4 Represent complex	deviation) of two or more different data	model.		
dimensions.	given the foci, using the fact that the sum	numbers on the complex plane in	sets.	MGSE9-12.S.CP.9 Use permutations		
MGSE9-12.N.VM.9 Understand that,	or difference of distances from the foci is	rectangular and polar form (including	MGSE9-12.S.ID.4 Use the mean and	and combinations to compute		
unlike multiplication of numbers, matrix	constant.	real and imaginary numbers), and explain why the rectangular and polar	standard deviation of a data set to fit it to a normal distribution and to estimate	probabilities of compound events and solve problems.		
multiplication for square matrices is not a commutative operation, but still	Solve systems of equations	forms of a given complex number	population percentages. Recognize that	Calculate expected values and use		
satisfies the associative and distributive	MGSE9-12.A.REI.7 Solve a simple	represent the same number.	there are data sets for which such a	them to solve problems		
properties.	system consisting of a linear equation	MGSE9-12.N.CN.5 Represent addition,	procedure is not appropriate. Use	MGSE9-12.S.MD.1 Define a random		
MGSE9-12.N.VM.10 Understand that	and a quadratic equation in two variables	subtraction, multiplication, and	calculators, spreadsheets, and tables to	variable for a quantity of interest by		
the zero and identity matrices play a role	algebraically and graphically. For example, find the points of intersection	conjugation of complex numbers	estimate areas under the normal curve.	assigning a numerical value to each		
in matrix addition and multiplication similar to the role of 0 and 1 in the real	between the line $y = -3x$ and the circle x^2	geometrically on the complex plane; use properties of this representation for	Understand and evaluate random processes underlying statistical	event in a sample space; graph the corresponding probability distribution		
numbers. The determinant of a square	y = 3.	computation. For example, $(-1 + \sqrt{3}i)^3 =$	experiments	using the same graphical displays as for		
matrix is nonzero if and only if the		8 because $(-1 + \sqrt{3}i)$ has modulus 2 and	MGSE9-12.S.IC.1 Understand statistics	data distributions.		
matrix has a multiplicative inverse.		argument 120°.	as a process for making inferences about	MGSE9-12.S.MD.2 Calculate the		
MGSE9-12.N.VM.12 Work with 2 X 2		MGSE9-12.N.CN.6 Calculate the	population parameters based on a	expected value of a random variable;		
matrices as transformations of the plane,		distance between numbers in the	random sample from that population.	interpret it as the mean of the probability		
and interpret the absolute value of the determinant in terms of area.		complex plane as the modulus of the	MGSE9-12.S.IC.2 Decide if a specified model is consistent with results from a	distribution. MGSE9-12.S.MD.3 Develop a		
Solve systems of equations		difference, and the midpoint of a segment as the average of the numbers at	given data-generating process, e.g., using	probability distribution for a random		
MGSE9-12.A.REI.8 Represent a system		its endpoints.	simulation. For example, a model says a	variable defined for a sample space in		
of linear equations as a single matrix		Represent and model with vector	spinning coin falls heads up with	which theoretical probabilities can be		
equation in a vector variable		quantities.	probability 0. 5. Would a result of 5 tails	calculated; find the expected value. For		
MGSE9-12.A.REI.9 Find the inverse of		MGSE9-12.N.VM.1 Recognize vector	in a row cause you to question the	example, find the theoretical probability		
a matrix if it exists and use it to solve		quantities as having both magnitude and	model?	distribution for the number of correct		
systems of linear equations (using technology for matrices of dimension 3 ×		direction. Represent vector quantities by directed line segments, and use	Make inferences and justify conclusions from sample surveys,	answers obtained by guessing on all five questions of a multiple-choice test where		
3 or greater).		appropriate symbols for vectors and their	experiments, and observational studies	each question has four choices, and find		
		magnitudes (e.g., \boldsymbol{v} , $ \boldsymbol{v} $, $ \boldsymbol{v} $, $ \boldsymbol{v} $).	MGSE9-12.S.IC.3 Recognize the	the expected grade under various		
		MGSE9-12.N.VM.2 Find the	purposes of and differences among	grading schemes.		
		components of a vector by subtracting	sample surveys, experiments, and	MGSE9-12.S.MD.4 Develop a		
		the coordinates of an initial point from	observational studies; explain how	probability distribution for a random		
		the coordinates of a terminal point. MGSE9-12.N.VM.3 Solve problems	randomization relates to each. MGSE9-12.S.IC.4 Use data from a	variable defined for a sample space in which probabilities are assigned		
		involving velocity and other quantities	sample survey to estimate a population	empirically; find the expected value. For		
		that can be represented by vectors.	mean or proportion; develop a margin of	example, find a current data distribution		
		* *	error through the use of simulation	on the number of TV sets per household		

- g - 1 - 1		T
Perform operations on vectors	models for random sampling.	in the United States, and calculate the
MGSE9-12.N.VM.4 Add and subtract	MGSE9-12.S.IC.5 Use data from a	expected number of sets per household.
vectors.	randomized experiment to compare two	How many TV sets would you expect to
MGSE9-12.N.VM4a Add vectors end-	treatments; use simulations to decide if	find in 100 randomly selected
to-end, component-wise, and by the	differences between parameters are	households?
parallelogram rule. Understand that the	significant.	Use probability to evaluate outcomes
magnitude of a sum of two vectors is	MGSE9-12.S.IC.6 Evaluate reports	of decisions
typically not the sum of the magnitudes.	based on data. For example, determining	MGSE9-12.S.MD.5 Weigh the possible
MGSE9-12.N.VM4b Given two vectors	quantitative or categorical data;	outcomes of a decision by assigning
in magnitude and direction form,	collection methods; biases or flaws in	probabilities to payoff values and finding
determine the magnitude and direction of	data.	expected values.
their sum.		MGSE9-12.S.MD.5a Find the expected
MGSE9-12.N.VM4c Understand vector		payoff for a game of chance. For
subtraction $v - w$ as $v + (-w)$, where $(-w)$		example, find the expected winnings from
is the additive inverse of w, with the		a state lottery ticket or a game at a fast-
same magnitude as w and pointing in the		food restaurant.
opposite direction. Represent vector		MGSE9-12.S.MD.5b Evaluate and
subtraction graphically by connecting the		compare strategies on the basis of
tips in the appropriate order, and perform		expected values. For example, compare
vector subtraction component-wise.		a high-deductible versus a low-
MGSE9-12.N.VM.5 Multiply a vector		deductible automobile insurance policy
by a scalar.		using various, but reasonable, chances of
MGSE9-12.N.VM.5a Represent scalar		having a minor or a major accident.
multiplication graphically by scaling		MGSE9-12.S.MD.6 Use probabilities to
vectors and possibly reversing their		make fair decisions (e.g., drawing by
direction; perform scalar multiplication		lots, using a random number generator).
component-wise, e.g., as $c(v_x, v_y) = (cv_x, v_y)$		MGSE9-12.S.MD.7 Analyze decisions
cv_y).		and strategies using probability concepts
MGSE9-12.N.VM.5b Compute the		(e.g., product testing, medical testing,
magnitude of a scalar multiple cv using		pulling a hockey goalie at the end of a
cv = c v. Compute the direction of cv		game).
knowing that when $ c v = 0$, the direction		
of cv is either along v (for $c > 0$) or		
against v (for $c < 0$).		
MGSE9-12.N.VM.11 Multiply a vector		
(regarded as a matrix with one column)		
by a matrix of suitable dimensions to		
produce another vector. Work with		
matrices as transformations of vectors.		