Georgia Standards of Excellence

Mathematics

Standards

GSE Algebra II/Advanced Algebra
K-12 Mathematics Introduction
Georgia Mathematics focuses on actively engaging the student in the development of mathematical understanding by working independently and cooperatively to solve problems, estimating and computing efficiently, using appropriate tools, concrete models and a variety of representations, and conducting investigations and recording findings. There is a shift toward applying mathematical concepts and skills in the context of authentic problems and student understanding of concepts rather than merely following a sequence of procedures. In mathematics classrooms, students will learn to think critically in a mathematical way with an understanding that there are many different solution pathways and sometimes more than one right answer in applied mathematics. Mathematics is the economy of information. The central idea of all mathematics is to discover how knowing some things leads, via reasoning, to knowing more—without having to commit the information to memory as a separate fact. It is the reasoned, logical connections that make mathematics coherent. The implementation of the Georgia Standards of Excellence in Mathematics places the expected emphasis on sense-making, problem solving, reasoning, representation, modeling, representation, connections, and communication.

Algebra II/Advanced Algebra

Algebra II/Advanced Algebra is the culminating course in a sequence of three high school courses designed to ensure career and college readiness. It is designed to prepare students for fourth course options relevant to their career pursuits.

The standards in the three-course high school sequence specify the mathematics that all students should study in order to be college and career ready. Additional mathematics content is provided in fourth credit courses and advanced courses including pre-calculus, calculus, advanced statistics, discrete mathematics, and mathematics of finance courses. High school course content standards are listed by conceptual categories including Number and Quantity, Algebra, Functions, Geometry, and Statistics and Probability. Conceptual categories portray a coherent view of high school mathematics content; a student’s work with functions, for example, crosses a number of traditional course boundaries, potentially up through and including calculus. Standards for Mathematical Practice provide the foundation for instruction and assessment.

Mathematics | Standards for Mathematical Practice

Mathematical Practices are listed with each grade’s mathematical content standards to reflect the need to connect the mathematical practices to mathematical content in instruction.

The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. These practices rest on important “processes and proficiencies” with longstanding importance in mathematics education. The first of these are the NCTM process standards of problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council’s report Adding It Up: adaptive reasoning, strategic competence, conceptual understanding (comprehension of mathematical concepts, operations and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently and appropriately), and productive disposition (habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one’s own efficacy).
1 Make sense of problems and persevere in solving them.

High school students start to examine problems by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. By high school, students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. They check their answers to problems using different methods and continually ask themselves, “Does this make sense?” They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

2 Reason abstractly and quantitatively.

High school students seek to make sense of quantities and their relationships in problem situations. They abstract a given situation and represent it symbolically, manipulate the representing symbols, and pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Students use quantitative reasoning to create coherent representations of the problem at hand; consider the units involved; attend to the meaning of quantities, not just how to compute them; and know and flexibly use different properties of operations and objects.

3 Construct viable arguments and critique the reasoning of others.

High school students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. High school students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is. High school students learn to determine domains to which an argument applies, listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

4 Model with mathematics.

High school students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. High school students making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.
5 Use appropriate tools strategically.

High school students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. High school students should be sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. They are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

6 Attend to precision. High school students try to communicate precisely to others by using clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

7 Look for and make use of structure. By high school, students look closely to discern a pattern or structure. In the expression $x^2 + 9x + 14$, older students can see the 14 as 2×7 and the 9 as $2 + 7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5 – 3(x – y)^2$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y. High school students use these patterns to create equivalent expressions, factor and solve equations, and compose functions, and transform figures.

8 Look for and express regularity in repeated reasoning.

High school students notice if calculations are repeated, and look both for general methods and for shortcuts. Noticing the regularity in the way terms cancel when expanding $(x – 1)(x + 1)$, $(x – 1)(x^2 + x + 1)$, and $(x – 1)(x^3 + x^2 + x + 1)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, derive formulas or make generalizations, high school students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

Connecting the Standards for Mathematical Practice to the Standards for Mathematical Content

The Standards for Mathematical Practice describe ways in which developing student practitioners of the discipline of mathematics should engage with the subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle and high school years. Designers of curricula, assessments, and professional development should all attend to the need to connect the mathematical practices to mathematical content in mathematics instruction.

The Standards for Mathematical Content are a balanced combination of procedure and understanding. Expectations that begin with the word “understand” are often especially good opportunities to connect the
practices to the content. **Students who do not have an understanding of a topic may rely on procedures too heavily.** Without a flexible base from which to work, they may be less likely to consider analogous problems, represent problems coherently, justify conclusions, apply the mathematics to practical situations, use technology mindfully to work with the mathematics, explain the mathematics accurately to other students, step back for an overview, or deviate from a known procedure to find a shortcut. **In short, a lack of understanding effectively prevents a student from engaging in the mathematical practices.**

In this respect, those content standards which set an expectation of understanding are potential “points of intersection” between the Standards for Mathematical Content and the Standards for Mathematical Practice. These points of intersection are intended to be weighted toward central and generative concepts in the school mathematics curriculum that most merit the time, resources, innovative energies, and focus necessary to qualitatively improve the curriculum, instruction, assessment, professional development, and student achievement in mathematics.

Algebra II/Advanced Algebra| Content Standards

The Real Number System

N.RN

Extend the properties of exponents to rational exponents.

MGSE9-12.N.RN.1. Explain how the meaning of rational exponents follows from extending the properties of integer exponents to rational numbers, allowing for a notation for radicals in terms of rational exponents. *For example, we define* $5^{1/3}$ *to be the cube root of 5 because we want* $[5^{1/3}]^3 = 5^{(1/3) x 3}$ *to hold, so* $[5^{1/3}]^3$ *must equal 5.*

MGSE9-12.N.RN.2 Rewrite expressions involving radicals and rational exponents using the properties of exponents.

The Complex Number System

N.CN

Perform arithmetic operations with complex numbers.

MGSE9-12.N.CN.1 Understand there is a complex number i such that $i^2 = -1$, and every complex number has the form $a + bi$ where a and b are real numbers.

MGSE9-12.N.CN.2 Use the relation $i^2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.

MGSE9-12.N.CN.3 Find the conjugate of a complex number; use the conjugate to find the absolute value (modulus) and quotient of complex numbers.

Use complex numbers in polynomial identities and equations.

MGSE9-12.N.CN.7 Solve quadratic equations with real coefficients that have complex solutions by (but not limited to) square roots, completing the square, and the quadratic formula.

MGSE9-12.N.CN.8 Extend polynomial identities to include factoring with complex numbers. *For example, rewrite* $x^2 + 4$ *as* $(x + 2i)(x - 2i)$.
MGSE9-12.N.CN.9 Use the Fundamental Theorem of Algebra to find all roots of a polynomial equation.

Seeing Structure in Expressions

Interpret the structure of expressions

MGSE9-12.A.SSE.1 Interpret expressions that represent a quantity in terms of its context.

MGSE9-12.A.SSE.1a Interpret parts of an expression, such as terms, factors, and coefficients, in context.

MGSE9-12.A.SSE.1b Given situations which utilize formulas or expressions with multiple terms and/or factors, interpret the meaning (in context) of individual terms or factors.

MGSE9-12.A.SSE.2 Use the structure of an expression to rewrite it in different equivalent forms. For example, see \(x^4 - y^4 \) as \((x^2)^2 - (y^2)^2\), thus recognizing it as a difference of squares that can be factored as \((x^2 - y^2)(x^2 + y^2)\).

Write expressions in equivalent forms to solve problems

MGSE9-12.A.SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

MGSE9-12.A.SSE.3c Use the properties of exponents to transform expressions for exponential functions.

For example, the expression \(1.15^t \), where \(t \) is in years, can be rewritten as \([1.15^{(1/12)}]^{(12t)} \approx 1.012^{(12t)} \) to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.

MGSE9-12.A.SSE.4 Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments.

Arithmetic with Polynomials and Rational Expressions

Perform arithmetic operations on polynomials

MGSE9-12.A.APR.1 Add, subtract, and multiply polynomials; understand that polynomials form a system analogous to the integers in that they are closed under these operations.

Understand the relationship between zeros and factors of polynomials

MGSE9-12.A.APR.2 Know and apply the Remainder Theorem: For a polynomial \(p(x) \) and a number \(a \), the remainder on division by \(x - a \) is \(p(a) \), so \(p(a) = 0 \) if and only if \((x - a) \) is a factor of \(p(x) \).

MGSE9-12.A.APR.3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.

Use polynomial identities to solve problems

MGSE9-12.A.APR.4 Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity \((x^2 + y^2)^2 = (x^2 - y^2)^2 + (2xy)^2\) can be used to generate Pythagorean triples.
MGSE-9-12.A.APR.5 Know and apply that the Binomial Theorem gives the expansion of \((x + y)^n\) in powers of \(x\) and \(y\) for a positive integer \(n\), where \(x\) and \(y\) are any numbers, with coefficients determined using Pascal’s Triangle.

Rewrite rational expressions

MGSE-9-12.A.APR.6 Rewrite simple rational expressions in different forms using inspection, long division, or a computer algebra system; write \(a(x)/b(x)\) in the form \(q(x) + r(x)/b(x)\), where \(a(x)\), \(b(x)\), \(q(x)\), and \(r(x)\) are polynomials with the degree of \(r(x)\) less than the degree of \(b(x)\).

MGSE-9-12.A.APR.7 Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.

Creating Equations

Create equations that describe numbers or relationships

MGSE-9-12.A.CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear, quadratic, simple rational, and exponential functions (integer inputs only).

MGSE-9-12.A.CED.2 Create linear, quadratic, and exponential equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (The phrase “in two or more variables” refers to formulas like the compound interest formula, in which \(A = P(1 + r/n)^n\) has multiple variables.)

MGSE-9-12.A.CED.3 Represent constraints by equations or inequalities, and by systems of equation and/or inequalities, and interpret data points as possible (i.e. a solution) or not possible (i.e. a non-solution) under the established constraints.

MGSE-9-12.A.CED.4 Rearrange formulas to highlight a quantity of interest using the same reasoning as in solving equations. Examples: Rearrange Ohm’s law \(V = IR\) to highlight resistance \(R\); Rearrange area of a circle formula \(A = \pi r^2\) to highlight the radius \(r\).

Reasoning with Equations and Inequalities

Understand solving equations as a process of reasoning and explain the reasoning

MGSE-9-12.A.REI.2 Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.

Solve equations and inequalities in one variable

MGSE-9-12.A.REI.4 Solve quadratic equations in one variable.

MGSE-9-12.A.REI.4b Solve quadratic equations by inspection (e.g., for \(x^2 = 49\)), taking square roots, factoring, completing the square, and the quadratic formula, as appropriate to the initial form of the equation (limit to real number solutions).
Georgia Department of Education

Represent and solve equations and inequalities graphically

MGSE-9-12.A.REI.11 Using graphs, tables, or successive approximations, show that the solution to the equation f(x) = g(x) is the x-value where the y-values of f(x) and g(x) are the same.

Interpreting Functions

Interpret functions that arise in applications in terms of the context

MGSE-9-12.F.IF.4 Using tables, graphs, and verbal descriptions, interpret the key characteristics of a function which models the relationship between two quantities. Sketch a graph showing key features including: intercepts; interval where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.

MGSE-9-12.F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.

MGSE-9-12.F.IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Analyze functions using different representations

MGSE-9-12.F.IF.7 Graph functions expressed algebraically and show key features of the graph both by hand and by using technology.

MGSE-9-12.F.IF.7b Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.

MGSE-9-12.F.IF.7c Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.

MGSE-9-12.F.IF.7d Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.

MGSE-9-12.F.IF.7e Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

MGSE-9-12.F.IF.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.

MGSE-9-12.F.IF.8b Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as y = (1.02)^t, y = (0.97)^t, y = (1.01)^{12t}, y = (1.2)^{t/10}, and classify them as representing exponential growth and decay.

MGSE-9-12.F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one function and an algebraic expression for another, say which has the larger maximum.
Building Functions

Build a function that models a relationship between two quantities

MGSE-12.F.BF.1 Write a function that describes a relationship between two quantities.

MGSE-12.F.BF.1b Combine standard function types using arithmetic operations in contextual situations (Adding, subtracting, and multiplying functions of different types).

MGSE-12.F.BF.1c Compose functions. *For example, if \(T(y) \) is the temperature in the atmosphere as a function of height, and \(h(t) \) is the height of a weather balloon as a function of time, then \(T(h(t)) \) is the temperature at the location of the weather balloon as a function of time.*

Build new functions from existing functions

MGSE-12.F.BF.3 Identify the effect on the graph of replacing \(f(x) \) by \(f(x) + k, k \, f(x), f(kx), \) and \(f(x + k) \) for specific values of \(k \) (both positive and negative); find the value of \(k \) given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

MGSE-12.F.BF.4 Find inverse functions.

MGSE-12.F.BF.4a Solve an equation of the form \(f(x) = c \) for a simple function \(f \) that has an inverse and write an expression for the inverse. For example, \(f(x) = 2(x^3) \) or \(f(x) = (x+1)/(x-1) \) for \(x \neq 1 \).

MGSE-12.F.BF.4b Verify by composition that one function is the inverse of another.

MGSE-12.F.BF.4c Read values of an inverse function from a graph or a table, given that the function has an inverse.

MGSE-12.F.BF.5 Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.

Linear, Quadratic, and Exponential Models

Construct and compare linear, quadratic, and exponential models and solve problems

MGSE-12.F.LE.4 For exponential models, express as a logarithm the solution to \(ab^c = d \) where \(a, c, \) and \(d \) are numbers and the base \(b \) is \(2, 10, \) or \(e \); evaluate the logarithm using technology.

Interpreting Categorical and Quantitative Data

Summarize, represent, and interpret data on a single count or measurement variable

MGSE-12.S.ID.2 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, mean absolute deviation, standard deviation) of two or more different data sets.

MGSE-12.S.ID.4 Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.
Making Inferences and Justifying Conclusions

S.I.C

Understand and evaluate random processes underlying statistical experiments

MGSE9-12.S.IC.1 Understand statistics as a process for making inferences about population parameters based on a random sample from that population.

MGSE9-12.S.IC.2 Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. *For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model?*

Make inferences and justify conclusions from sample surveys, experiments, and observational studies

MGSE9-12.S.IC.3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.

MGSE9-12.S.IC.4 Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.

MGSE9-12.S.IC.5 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.

MGSE9-12.S.IC.6 Evaluate reports based on data. *For example, determining quantitative or categorical data; collection methods; biases or flaws in data.*