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NOTE: Mathematical standards are interwoven and should be addressed throughout the year in as many different units and tasks as possible in order to stress the natural connections that exist among mathematical topics. 

Grade 9-12 Key:   

Number and Quantity Strand: RN = The Real Number System, Q = Quantities, CN = Complex Number System, VM = Vector and Matrix Quantities  

Algebra Strand: SSE = Seeing Structure in Expressions, APR = Arithmetic with Polynomial and Rational Expressions, CED = Creating Equations,   REI = Reasoning with Equations and Inequalities 

Functions Strand: IF = Interpreting Functions, LE = Linear and Exponential Models, BF = Building Functions, TF = Trigonometric Functions 

Geometry Strand: CO = Congruence, SRT = Similarity, Right Triangles, and Trigonometry, C = Circles, GPE = Expressing Geometric Properties with Equations, GMD = Geometric Measurement and Dimension, 

                                MG = Modeling with Geometry 

Statistics and Probability Strand: ID = Interpreting Categorical and Quantitative Data, IC = Making Inferences and Justifying Conclusions, CP = Conditional Probability and the Rules of Probability, MD = Using 

Probability to Make Decisions  

GSE Analytic Geometry Curriculum Map 
1st Semester 2nd Semester 

Click on the link in the table to view a video that shows instructional strategies for teaching each standard. 

Unit 1 

(6 – 7 weeks) 

Unit 2 

(2 – 3 weeks) 

Unit 3 

(4 – 5 weeks) 

Unit 4 

(2 – 3 weeks) 

Unit 5 

(7 – 8 weeks) 

Unit 6 

(4 – 5 weeks) 

Unit 7 

(4 – 5 weeks) 
Similarity, 

Congruence, and 

Proofs 

Right Triangle 

Trigonometry 

 

Circles and 

Volume 

 

Extending the 

Number System 

 

Quadratic 

Functions 

 

Geometric and 

Algebraic 

Connections 

Applications of 

Probability 

 
MGSE9-12.G.SRT.1 

MGSE9-12.G.SRT.2 

MGSE9-12.G.SRT.3 

MGSE9-12.G.SRT.4 

MGSE9-12.G.SRT.5 

MGSE9-12.G.CO.6 

MGSE9-12.G.CO.7 

MGSE9-12.G.CO.8 

MGSE9-12.G.CO.9 

MGSE9-12.G.CO.10 

MGSE9-12.G.CO.11 

MGSE9-12.G.CO.12 

MGSE9-12.G.CO.13 

MGSE9-12.G.GPE.4 

 

MGSE9-12.G.SRT.6 

MGSE9-12.G.SRT.7 

MGSE9-12.G.SRT.8 

 

MGSE9-12.G.C.1 

MGSE9-12.G.C.2 

MGSE9-12.G.C.3 

MGSE9-12.G.C.4 

MGSE9-12.G.C.5 

MGSE9-12.G.GMD.1 

MGSE9-12.G.GMD.2 

MGSE9-12.G.GMD.3 

MGSE9-12.G.GMD.4 

 

MGSE9-12.N.RN.2 

MGSE9-12.N.RN.3 

MGSE9-12.A.APR.1 

  

MGSE9-12.A.SSE.1 

MGSE9-12.A.SSE.1a 

MGSE9-12.A.SSE.1b 

MGSE9-12.A.SSE.2 

MGSE9-12.A.SSE.3 

MGSE9-12.A.SSE.3a 

MGSE9-12.A.SSE.3b 

MGSE9-12.A.CED.1 

MGSE9-12.A.CED.2 

MGSE9-12.A.CED.4 

MGSE9-12.A.REI.4 

MGSE9-12.A.REI.4a 

MGSE9-12.A.REI.4b 

MGSE9-12.F.IF.4 

MGSE9-12.F.IF.5 

MGSE9-12.F.IF.6 

MGSE9-12.F.IF.7 

MGSE9-12.F.IF.7a 

MGSE9-12.F.IF.8 

MGSE9-12.F.IF.8a 

MGSE9-12.F.IF.9 

MGSE9-12.F.BF.1 

MGSE9-12.F.BF.1a 

MGSE9-12.F.BF.3 

MGSE9-12.F.LE.3 

MGSE9-12.S.ID.6 

MGSE9-12.S.ID.6a 

MGSE9-12.G.GPE.1 

MGSE9-12.G.GPE.4 

MGSE9-12.G.MG.1 

MGSE9-12.G.MG.2 

MGSE9-12.G.MG.3 

 

MGSE9-12.S.CP.1 

MGSE9-12.S.CP.2 

MGSE9-12.S.CP.3 

MGSE9-12.S.CP.4 

MGSE9-12.S.CP.5 

MGSE9-12.S.CP.6 

MGSE9-12.S.CP.7 

       

These units were written to build upon concepts from prior units, so later units contain tasks that depend upon the concepts addressed in earlier units. 

All units will include the Mathematical Practices and indicate skills to maintain.  

https://www.georgiastandards.org/Georgia-Standards/Frameworks/Analytic-Geometry-Unit-1.pdf
https://www.georgiastandards.org/Georgia-Standards/Frameworks/Analytic-Geometry-Unit-1.pdf
https://www.georgiastandards.org/Georgia-Standards/Frameworks/Analytic-Geometry-Unit-1.pdf
https://www.georgiastandards.org/Georgia-Standards/Frameworks/Analytic-Geometry-Unit-2.pdf
https://www.georgiastandards.org/Georgia-Standards/Frameworks/Analytic-Geometry-Unit-2.pdf
https://www.georgiastandards.org/Georgia-Standards/Frameworks/Analytic-Geometry-Unit-3.pdf
https://www.georgiastandards.org/Georgia-Standards/Frameworks/Analytic-Geometry-Unit-3.pdf
https://www.georgiastandards.org/Georgia-Standards/Frameworks/Analytic-Geometry-Unit-4.pdf
https://www.georgiastandards.org/Georgia-Standards/Frameworks/Analytic-Geometry-Unit-4.pdf
https://www.georgiastandards.org/Georgia-Standards/Frameworks/Analytic-Geometry-Unit-5.pdf
https://www.georgiastandards.org/Georgia-Standards/Frameworks/Analytic-Geometry-Unit-5.pdf
https://www.georgiastandards.org/Georgia-Standards/Frameworks/Analytic-Geometry-Unit-6.pdf
https://www.georgiastandards.org/Georgia-Standards/Frameworks/Analytic-Geometry-Unit-6.pdf
https://www.georgiastandards.org/Georgia-Standards/Frameworks/Analytic-Geometry-Unit-6.pdf
https://www.georgiastandards.org/Georgia-Standards/Frameworks/Analytic-Geometry-Unit-7.pdf
https://www.georgiastandards.org/Georgia-Standards/Frameworks/Analytic-Geometry-Unit-7.pdf
https://www.youtube.com/watch?v=0dQaPf5Uhcs
https://www.youtube.com/watch?v=sw1h10U9e3o
https://www.youtube.com/watch?v=sw1h10U9e3o
https://www.youtube.com/watch?v=sw1h10U9e3o
https://www.youtube.com/watch?v=3D2TKKNsO9Y
https://www.youtube.com/watch?v=ygW7R_kF_dc
https://www.youtube.com/watch?v=msO3t0N1Tfc
https://www.youtube.com/watch?v=-y6nJqpyQq0
https://www.youtube.com/watch?v=-y6nJqpyQq0
https://www.youtube.com/watch?v=jJ2N3M7dtus
https://www.youtube.com/watch?v=8SxVQ2IYDyE
https://www.youtube.com/watch?v=6c8p2Lny_SI
https://www.youtube.com/watch?v=ZsTjaH2okXk
https://www.youtube.com/watch?v=diN_RoEJPWQ
https://www.youtube.com/watch?v=diN_RoEJPWQ
https://www.youtube.com/watch?v=U_zDb-H2Rzs
https://www.youtube.com/watch?v=uwe_Oe6S_yo
https://www.youtube.com/watch?v=RlKZJUHDooE
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The Comprehensive Course Overviews are designed to provide access to multiple sources of support for 

implementing and instructing courses involving the Georgia Standards of Excellence. 

GSE Analytic Geometry          
 

Analytic Geometry is the second course in a sequence of three required high school courses designed to 

ensure career and college readiness. The course represents a discrete study of geometry with correlated 

statistics applications.  

 

The standards in the three-course high school sequence specify the mathematics that all students should 

study in order to be college and career ready. Additional mathematics content is provided in fourth credit 

courses and advanced courses including pre-calculus, calculus, advanced statistics, discrete mathematics, 

and mathematics of finance courses. High school course content standards are listed by conceptual 

categories including Number and Quantity, Algebra, Functions, Geometry, and Statistics and Probability. 

Conceptual categories portray a coherent view of high school mathematics content; a student’s work with 

functions, for example, crosses a number of traditional course boundaries, potentially up through and 

including calculus. Standards for Mathematical Practice provide the foundation for instruction and 

assessment. 

GSE Analytic Geometry: Unit Descriptions 

Unit 1: Building on standards from Coordinate Algebra and from middle school, students will use 

transformations and proportional reasoning to develop a formal understanding of similarity and 

congruence. Students will identify criteria for similarity and congruence of triangles, develop facility with 

geometric proofs (variety of formats), and use the concepts of similarity and congruence to prove 

theorems involving lines, angles, triangles, and other polygons. 

Unit 2: Students will apply similarity in right triangles to understand right triangle trigonometry. Students 

will use the Pythagorean Theorem and the relationship between the sine and cosine of complementary 

angles to solve problems involving right triangles. 

Unit 3: Students will understand and apply theorems about circles, find arc lengths of circles, and find 

areas of sectors of circles.  Students will develop and explain formulas related to circles and the volume 

of solid figures and use the formulas to solve problems. Building on standards from middle school, 

students will extend the study of identifying cross-sections of three-dimensional shapes to identifying 

three-dimensional objects generated by rotations of two-dimensional objects. 

Unit 4: Students will address properties of rational and irrational numbers, rewrite expressions involving 

radicals, and perform operations on polynomials in preparation for working with quadratic functions later 

in the course. 

Unit 5: Students will analyze quadratic functions. Students will investigate key features of graphs, solve 

quadratic equations by taking the square roots, factoring (x2 + bx + c AND ax2 + bx + c), completing the 

square, and using the quadratic formula. Students will compare and contrast graphs in standard, vertex, 

and intercept forms. Students will only work with real number solutions. 

Unit 6: Students will verify algebraically geometric relationships of circles in the coordinate plane. 

Students will derive the equation of a circle and model real-world objects using geometric shapes and 

concepts. 

Unit 7: Students will understand independence and conditional probability and use them to interpret data. 

Building on standards from middle school, students will formalize the rules of probability and use the 

rules to compute probabilities of compound events in a uniform probability model.  
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Flipbooks 
 
The Common Core “FlipBooks” are a compilation of research, “unpacked” standards from many states, 

instructional strategies and examples for each standard at each grade level. The intent is to show 

the connections to the Standards of Mathematical Practices for the content standards and to get detailed 

information at each level.  The High School Flipbook is an interactive document arranged by the content 

domains listed on the following pages. The links on each domain and standard will take you to specific 

information on that standard/domain within the Flip Book. 

 

Mathematics | High School – Number and Quantity  
 

Numbers and Number Systems: During the years from kindergarten to eighth grade, students must 

repeatedly extend their conception of number. At first, “number” means “counting number”: 1, 2, 3... 

Soon after that, 0 is used to represent “none” and the whole numbers are formed by the counting numbers 

together with zero. The next extension is fractions. At first, fractions are barely numbers and tied strongly 

to pictorial representations. Yet by the time students understand division of fractions, they have a strong 

concept of fractions as numbers and have connected them, via their decimal representations, with the 

base-ten system used to represent the whole numbers. During middle school, fractions are augmented by 

negative fractions to form the rational numbers. In Grade 8, students extend this system once more, 

augmenting the rational numbers with the irrational numbers to form the real numbers. In high school, 

students will be exposed to yet another extension of number, when the real numbers are augmented by the 

imaginary numbers to form the complex numbers. With each extension of number, the meanings of 

addition, subtraction, multiplication, and division are extended. In each new number system—integers, 

rational numbers, real numbers, and complex numbers—the four operations stay the same in two 

important ways: They have the commutative, associative, and distributive properties and their new 

meanings are consistent with their previous meanings. Extending the properties of whole-number 

exponents leads to new and productive notation. For example, properties of whole-number exponents 

suggest that (51/3)3 should be 5(1/3)3 = 51 = 5 and that 51/3 should be the cube root of 5. Calculators, 

spreadsheets, and computer algebra systems can provide ways for students to become better acquainted 

with these new number systems and their notation. They can be used to generate data for numerical 

experiments, to help understand the workings of matrix, vector, and complex number algebra, and to 

experiment with non-integer exponents. 

 

Quantities: In real world problems, the answers are usually not numbers but quantities: numbers with 

units, which involves measurement. In their work in measurement up through Grade 8, students primarily 

measure commonly used attributes such as length, area, and volume. In high school, students encounter a 

wider variety of units in modeling, e.g., acceleration, currency conversions, derived quantities such as 

person-hours and heating degree days, social science rates such as per-capita income, and rates in 

everyday life such as points scored per game or batting averages. They also encounter novel situations in 

which they themselves must conceive the attributes of interest. For example, to find a good measure of 

overall highway safety, they might propose measures such as fatalities per year, fatalities per year per 

driver, or fatalities per vehicle-mile traveled. Such a conceptual process is sometimes called 

quantification. Quantification is important for science, as when surface area suddenly “stands out” as an 

important variable in evaporation. Quantification is also important for companies, which must 

conceptualize relevant attributes and create or choose suitable measures for them.   

http://community.ksde.org/Default.aspx?tabid=5646
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The Real Number System  N.RN 

 

Extend the properties of exponents to rational exponents. 

 

MGSE9-12.N.RN.2 Rewrite expressions involving radicals and rational exponents using the properties of 

exponents. (i.e., simplify and/or use the operations of addition, subtraction, and multiplication, with 

radicals within expressions limited to square roots). 

 

Use properties of rational and irrational numbers. 

 

MGSE9-12.N.RN.3 Explain why the sum or product of rational numbers is rational; why the sum of a 

rational number and an irrational number is irrational; and why the product of a nonzero rational number 

and an irrational number is irrational. 

Mathematics | High School – Algebra        
 

Expressions: An expression is a record of a computation with numbers, symbols that represent numbers, 

arithmetic operations, exponentiation, and, at more advanced levels, the operation of evaluating a 

function. Conventions about the use of parentheses and the order of operations assure that each expression 

is unambiguous. Creating an expression that describes a computation involving a general quantity 

requires the ability to express the computation in general terms, abstracting from specific instances.  

 

Reading an expression with comprehension involves analysis of its underlying structure. This may 

suggest a different but equivalent way of writing the expression that exhibits some different aspect of its 

meaning. For example, p + 0.05p can be interpreted as the addition of a 5% tax to a price p. Rewriting p + 

0.05p as 1.05p shows that adding a tax is the same as multiplying the price by a constant factor.  

 

Algebraic manipulations are governed by the properties of operations and exponents, and the conventions 

of algebraic notation. At times, an expression is the result of applying operations to simpler expressions. 

For example, p + 0.05p is the sum of the simpler expressions p and 0.05p. Viewing an expression as the 

result of operation on simpler expressions can sometimes clarify its underlying structure.  

 

A spreadsheet or a computer algebra system (CAS) can be used to experiment with algebraic expressions, 

perform complicated algebraic manipulations, and understand how algebraic manipulations behave. 

 

Equations and inequalities: An equation is a statement of equality between two expressions, often 

viewed as a question asking for which values of the variables the expressions on either side are in fact 

equal. These values are the solutions to the equation. An identity, in contrast, is true for all values of the 

variables; identities are often developed by rewriting an expression in an equivalent form. 

 

The solutions of an equation in one variable form a set of numbers; the solutions of an equation in two 

variables form a set of ordered pairs of numbers, which can be plotted in the coordinate plane. Two or 

more equations and/or inequalities form a system. A solution for such a system must satisfy every 

equation and inequality in the system. 

 

An equation can often be solved by successively deducing from it one or more simpler equations. For 

example, one can add the same constant to both sides without changing the solutions, but squaring both 

sides might lead to extraneous solutions. Strategic competence in solving includes looking ahead for 

productive manipulations and anticipating the nature and number of solutions. 

Some equations have no solutions in a given number system, but have a solution in a larger system. For 

example, the solution of x + 1 = 0 is an integer, not a whole number; the solution of 2x + 1 = 0 is a 

rational number, not an integer; the solutions of x2 – 2 = 0 are real numbers, not rational numbers; and the 

solutions of x2 + 2 = 0 are complex numbers, not real numbers. 
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The same solution techniques used to solve equations can be used to rearrange formulas. For example, the 

formula for the area of a trapezoid, A = ((b1+b2)/2)h, can be solved for h using the same deductive 

process. Inequalities can be solved by reasoning about the properties of inequality. Many, but not all, of 

the properties of equality continue to hold for inequalities and can be useful in solving them. 

 

Connections to Functions: Expressions can define functions, and equivalent expressions define the same 

function. Asking when two functions have the same value for the same input leads to an equation; 

graphing the two functions allows for finding approximate solutions of the equation. Converting a verbal 

description to an equation, inequality, or system of these is an essential skill. 
 

Seeing Structure in Expressions  A.SSE 

 

Interpret the structure of expressions 
 

MGSE9-12.A.SSE.1 Interpret expressions that represent a quantity in terms of its context.  

 

MGSE9-12.A.SSE.1a Interpret parts of an expression, such as terms, factors, and coefficients, in 

context. 

 

MGSE9-12.A.SSE.1b Given situations which utilize formulas or expressions with multiple terms 

and/or factors, interpret the meaning (in context) of individual terms or factors. 

 

MGSE9-12.A.SSE.2 Use the structure of an expression to rewrite it in different equivalent forms. For 

example, see x4 – y4 as (x2)2 - (y2)2, thus recognizing it as a difference of squares that can be factored as 

(x2 – y2) (x2 + y2). 

 
Write expressions in equivalent forms to solve problems 
 

MGSE9-12.A.SSE.3 Choose and produce an equivalent form of an expression to reveal and explain 

properties of the quantity represented by the expression. 

  

MGSE9-12.A.SSE.3a Factor any quadratic expression to reveal the zeros of the function defined by 

the expression.  
 
MGSE9-12.A.SSE.3b Complete the square in a quadratic expression to reveal the maximum and 

minimum value of the function defined by the expression. 
 

Arithmetic with Polynomials and Rational Expressions  A.APR 

 

Perform arithmetic operations on polynomials 

 

MGSE9-12.A.APR.1 Add, subtract, and multiply polynomials; understand that polynomials form a 

system analogous to the integers in that they are closed under these operations.   
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Creating Equations A.CED 

 

Create equations that describe numbers or relationships 

 

MGSE9-12.A.CED.1 Create equations and inequalities in one variable and use them to solve problems.  

Include equations arising from linear, quadratic, simple rational, and exponential functions (integer inputs 

only).  
 
MGSE9-12.A.CED.2 Create linear, quadratic, and exponential equations in two or more variables to 

represent relationships between quantities; graph equations on coordinate axes with labels and scales. 

(The phrase “in two or more variables” refers to formulas like the compound interest formula, in which A 

= P(1 + r/n)nt has multiple variables.) 

 

MGSE9-12.A.CED.4 Rearrange formulas to highlight a quantity of interest using the same reasoning as 

in solving equations.  Examples: Rearrange Ohm’s law V = IR to highlight resistance R; Rearrange area 

of a circle formula A =  π r2 to highlight the radius r. 
 

Reasoning with Equations and Inequalities  A.REI 

 

Solve equations and inequalities in one variable 

 

MGSE9-12.A.REI.4 Solve quadratic equations in one variable.  

 

MGSE9-12.A.REI.4a Use the method of completing the square to transform any quadratic equation 

in x into an equation of the form (x – p)2 = q that has the same solutions.  Derive the quadratic 

formula from ax2 + bx + c = 0. 

 

MGSE9-12.A.REI.4b Solve quadratic equations by inspection (e.g., for x2 = 49), taking square roots, 

factoring, completing the square, and the quadratic formula, as appropriate to the initial form of the 

equation (limit to real number solutions). 

Mathematics | High School – Functions        
 

Functions describe situations where one quantity determines another. For example, the return on $10,000 

invested at an annualized percentage rate of 4.25% is a function of the length of time the money is 

invested. Because we continually make theories about dependencies between quantities in nature and 

society, functions are important tools in the construction of mathematical models. 

 

In school mathematics, functions usually have numerical inputs and outputs and are often defined by an 

algebraic expression. For example, the time in hours it takes for a car to drive 100 miles is a function of 

the car’s speed in miles per hour, v; the rule T(v) = 100/v expresses this relationship algebraically and 

defines a function whose name is T. 

 

The set of inputs to a function is called its domain. We often infer the domain to be all inputs for which 

the expression defining a function has a value, or for which the function makes sense in a given context.  

A function can be described in various ways, such as by a graph (e.g., the trace of a seismograph); by a 

verbal rule, as in, “I’ll give you a state, you give me the capital city;” by an algebraic expression like f(x) 

= a + bx; or by a recursive rule. The graph of a function is often a useful way of visualizing the 

relationship of the function models, and manipulating a mathematical expression for a function can throw 

light on the function’s properties. 

 

Functions presented as expressions can model many important phenomena. Two important families of 

functions characterized by laws of growth are linear functions, which grow at a constant rate, and 
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exponential functions, which grow at a constant percent rate. Linear functions with a constant term of 

zero describe proportional relationships. 

 

A graphing utility or a computer algebra system can be used to experiment with properties of these 

functions and their graphs and to build computational models of functions, including recursively defined 

functions.  

 

Connections to Expressions, Equations, Modeling, and Coordinates: 

Determining an output value for a particular input involves evaluating an expression; finding inputs that 

yield a given output involves solving an equation. Questions about when two functions have the same 

value for the same input lead to equations, whose solutions can be visualized from the intersection of their 

graphs. Because functions describe relationships between quantities, they are frequently used in 

modeling. Sometimes functions are defined by a recursive process, which can be displayed effectively 

using a spreadsheet or other technology. 
 

Interpreting Functions  F.IF 

 

Interpret functions that arise in applications in terms of the context 

 

MGSE9-12.F.IF.4 Using tables, graphs, and verbal descriptions, interpret the key characteristics of a 

function which models the relationship between two quantities.  Sketch a graph showing key features 

including: intercepts; interval where the function is increasing, decreasing, positive, or negative; relative 

maximums and minimums; symmetries; end behavior; and periodicity. 

 

MGSE9-12.F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative 

relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to 

assemble n engines in a factory, then the positive integers would be an appropriate domain for the 

function. 
 

MGSE9-12.F.IF.6 Calculate and interpret the average rate of change of a function (presented 

symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.  

 

Analyze functions using different representations 

 

MGSE9-12.F.IF.7 Graph functions expressed algebraically and show key features of the graph both by 

hand and by using technology. 

 

MGSE9-12.F.IF.7a Graph linear and quadratic functions and show intercepts, maxima, and minima 

(as determined by the function or by context). 

 

MGSE9-12.F.IF.8 Write a function defined by an expression in different but equivalent forms to reveal 

and explain different properties of the function.  

 

MGSE9-12.F.IF.8a Use the process of factoring and completing the square in a quadratic function to 

show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. For 

example, compare and contrast quadratic functions in standard, vertex, and intercept forms. 

 

MGSE9-12.F.IF.9 Compare properties of two functions each represented in a different way 

(algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph 

of one function and an algebraic expression for another, say which has the larger maximum.   
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Building Functions  F.BF 

 

Build a function that models a relationship between two quantities 

 

MGSE9-12.F.BF.1 Write a function that describes a relationship between two quantities.  

 

MGSE9-12.F.BF.1a Determine an explicit expression and the recursive process (steps for 

calculation) from context. For example, if Jimmy starts out with $15 and earns $2 a day, the explicit 

expression “2x+15” can be described recursively (either in writing or verbally) as “to find out how 

much money Jimmy will have tomorrow, you add $2 to his total today.” 
1 02, 15n nJ J J−= + =  

 

Build new functions from existing functions 

 

MGSE9-12.F.BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) 

for specific values of k (both positive and negative); find the value of k given the graphs.  Experiment 

with cases and illustrate an explanation of the effects on the graph using technology.  Include recognizing 

even and odd functions from their graphs and algebraic expressions for them.  
 

Linear, Quadratic, and Exponential Models F.LE 

 

Construct and compare linear, quadratic, and exponential models and solve problems 

 

MGSE9-12.F.LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually 

exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. 

Mathematics | High School – Geometry        
 

An understanding of the attributes and relationships of geometric objects can be applied in diverse 

contexts—interpreting a schematic drawing, estimating the amount of wood needed to frame a sloping 

roof, rendering computer graphics, or designing a sewing pattern for the most efficient use of material. 

 

Although there are many types of geometry, school mathematics is devoted primarily to plane Euclidean 

geometry, studied both synthetically (without coordinates) and analytically (with coordinates). Euclidean 

geometry is characterized most importantly by the Parallel Postulate that states that through a point not on 

a given line there is exactly one parallel line. (Spherical geometry, in contrast, has no parallel lines.)  

During high school, students begin to formalize their geometry experiences from elementary and middle 

school, using more precise definitions and developing careful proofs. Later in college some students 

develop Euclidean and other geometries carefully from a small set of axioms. 

 

The concepts of congruence, similarity, and symmetry can be understood from the perspective of 

geometric transformation. Fundamental are the rigid motions: translations, rotations, reflections, and 

combinations of these, all of which are here assumed to preserve distance and angles (and therefore shape 

in general). Reflections and rotations each explain a particular type of symmetry, and the symmetries of 

an object offer insight into its attributes—as when the reflective symmetry of an isosceles triangle assures 

that its base angles are congruent. 

 

In the approach taken here, two geometric figures are defined to be congruent if there is a sequence of 

rigid motions that carries one onto the other. This is the principle of superposition. For triangles, 

congruence means the equality of all corresponding pairs of sides and all corresponding pairs of angles. 

During the middle grades, through experiences drawing triangles from given conditions, students notice 

ways to specify enough measures in a triangle to ensure that all triangles drawn with those measures are 
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congruent. Once these triangle congruence criteria (ASA, SAS, and SSS) are established using rigid 

motions, they can be used to prove theorems about triangles, quadrilaterals, and other geometric figures. 

 

Similarity transformations (rigid motions followed by dilations) define similarity in the same way that 

rigid motions define congruence, thereby formalizing the similarity ideas of "same shape" and "scale 

factor" developed in the middle grades. These transformations lead to the criterion for triangle similarity 

that two pairs of corresponding angles are congruent. 

 

The definitions of sine, cosine, and tangent for acute angles are founded on right triangles and similarity, 

and, with the Pythagorean Theorem, are fundamental in many real-world and theoretical situations. The 

Pythagorean Theorem is generalized to non-right triangles by the Law of Cosines. Together, the Laws of 

Sines and Cosines embody the triangle congruence criteria for the cases where three pieces of information 

suffice to completely solve a triangle. Furthermore, these laws yield two possible solutions in the 

ambiguous case, illustrating that Side-Side-Angle is not a congruence criterion. 

 

Analytic geometry connects algebra and geometry, resulting in powerful methods of analysis and problem 

solving. Just as the number line associates numbers with locations in one dimension, a pair of 

perpendicular axes associates pairs of numbers with locations in two dimensions. This correspondence 

between numerical coordinates and geometric points allows methods from algebra to be applied to 

geometry and vice versa. The solution set of an equation becomes a geometric curve, making 

visualization a tool for doing and understanding algebra. Geometric shapes can be described by equations, 

making algebraic manipulation into a tool for geometric understanding, modeling, and proof. Geometric 

transformations of the graphs of equations correspond to algebraic changes in their equations. 

 

Dynamic geometry environments provide students with experimental and modeling tools that allow them 

to investigate geometric phenomena in much the same way as computer algebra systems allow them to 

experiment with algebraic phenomena. 

 

Connections to Equations: The correspondence between numerical coordinates and geometric points 

allows methods from algebra to be applied to geometry and vice versa. The solution set of an equation 

becomes a geometric curve, making visualization a tool for doing and understanding algebra. Geometric 

shapes can be described by equations, making algebraic manipulation into a tool for geometric 

understanding, modeling, and proof. 
 

Congruence  G.CO 

 

Understand congruence in terms of rigid motions 

 

MGSE9-12.G.CO.6 Use geometric descriptions of rigid motions to transform figures and to predict the 

effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in 

terms of rigid motions to decide if they are congruent.  

 

MGSE9-12.G.CO.7 Use the definition of congruence in terms of rigid motions to show that two triangles 

are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.  

 
MGSE9-12.G.CO.8 Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from 

the definition of congruence in terms of rigid motions. (Extend to include HL and AAS.)   
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Prove geometric theorems 
 

MGSE9-12.G.CO.9 Prove theorems about lines and angles. Theorems include: vertical angles are 

congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and 

corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those 

equidistant from the segment’s endpoints.  

 
MGSE9-12.G.CO.10 Prove theorems about triangles. Theorems include: measures of interior angles of a 

triangle sum to 180 degrees; base angles of isosceles triangles are congruent; the segment joining 

midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a 

triangle meet at a point.  

 

MGSE9-12.G.CO.11 Prove theorems about parallelograms. Theorems include: opposite sides are 

congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and 

conversely, rectangles are parallelograms with congruent diagonals.  

 

Make geometric constructions 

 

MGSE9-12.G.CO.12 Make formal geometric constructions with a variety of tools and methods (compass 

and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a 

segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, 

including the perpendicular bisector of a line segment; and constructing a line parallel to a given line 

through a point not on the line.  

 

MGSE9-12.G.CO.13 Construct an equilateral triangle, a square, and a regular hexagon, each inscribed in 

a circle.   
 

Similarity, Right Triangles, and Trigonometry  G.SRT 

 

Understand similarity in terms of similarity transformations 

 

MGSE9-12.G.SRT.1 Verify experimentally the properties of dilations given by a center and a scale 

factor. 

a. The dilation of a line not passing through the center of the dilation results in a parallel line and 

leaves a line passing through the center unchanged. 

b. The dilation of a line segment is longer or shorter according to the ratio given by the scale factor.  
 

MGSE9-12.G.SRT.2 Given two figures, use the definition of similarity in terms of similarity 

transformations to decide if they are similar; explain, using similarity transformations, the meaning of 

similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all 

corresponding pairs of sides. 

 
MGSE9-12.G.SRT.3 Use the properties of similarity transformations to establish the AA criterion for 

two triangles to be similar.  

 

Prove theorems involving similarity 

 

MGSE9-12.G.SRT.4 Prove theorems about triangles. Theorems include: a line parallel to one side of a 

triangle divides the other two proportionally, (and its converse); the Pythagorean Theorem using triangle 

similarity.   
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MGSE9-12.G.SRT.5 Use congruence and similarity criteria for triangles to solve problems and to prove 

relationships in geometric figures.  

 

Define trigonometric ratios and solve problems involving right triangles 

 

MGSE9-12.G.SRT.6 Understand that by similarity, side ratios in right triangles are properties of the 

angles in the triangle, leading to definitions of trigonometric ratios for acute angles.  

 
MGSE9-12.G.SRT.7 Explain and use the relationship between the sine and cosine of complementary 

angles.  

 

MGSE9-12.G.SRT.8 Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in 

applied problems.  

 

Circles  G.C 

 

Understand and apply theorems about circles 
 

MGSE9-12.G.C.1 Understand that all circles are similar.  

 

MGSE9-12.G.C.2 Identify and describe relationships among inscribed angles, radii, chords, tangents, 

and secants. Include the relationship between central, inscribed, and circumscribed angles; inscribed 

angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the 

radius intersects the circle. 

 

MGSE9-12.G.C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of 

angles for a quadrilateral inscribed in a circle.  

 

MGSE9-12.G.C.4 Construct a tangent line from a point outside a given circle to the circle.  

 

Find arc lengths and areas of sectors of circles 

 

MGSE9-12.G.C.5 Derive using similarity the fact that the length of the arc intercepted by an angle is 

proportional to the radius, and define the radian measure of the angle as the constant of proportionality; 

derive the formula for the area of a sector.   

 

Expressing Geometric Properties with Equations  G.GPE 

 

Translate between the geometric description and the equation for a conic section 

 

MGSE9-12.G.GPE.1 Derive the equation of a circle of given center and radius using the Pythagorean 

Theorem; complete the square to find the center and radius of a circle given by an equation.  

 

Use coordinates to prove simple geometric theorems algebraically 

 

MGSE9-12.G.GPE.4 Use coordinates to prove simple geometric theorems algebraically.  For example, 

prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove 

or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0,2).  

(Focus on quadrilaterals, right triangles, and circles.)   
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Geometric Measurement and Dimension  G.GMD 

 

Explain volume formulas and use them to solve problems 

 

MGSE9-12.G.GMD.1 Give informal arguments for geometric formulas. 

a. Give informal arguments for the formulas of the circumference of a circle and area of a circle 

using dissection arguments and informal limit arguments. 

b. Give informal arguments for the formula of the volume of a cylinder, pyramid, and cone using 

Cavalieri’s principle.  

 

MGSE9-12.G.GMD.2 Give an informal argument using Cavalieri’s principle for the formulas for the 

volume of a sphere and other solid figures.  

 

MGSE9-12.G.GMD.3 Use volume formulas for cylinders, pyramids, cones, and spheres to solve 

problems.  

 
Visualize relationships between two-dimensional and three-dimensional objects 

 

MGSE9-12.G.GMD.4 Identify the shapes of two-dimensional cross-sections of three-dimensional 

objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.  
 

Modeling with Geometry  G.MG 
 

Apply geometric concepts in modeling situations 

 

MGSE9-12.G.MG.1 Use geometric shapes, their measures, and their properties to describe objects 

(e.g., modeling a tree trunk or a human torso as a cylinder).  

 

MGSE9-12.G.MG.2 Apply concepts of density based on area and volume in modeling situations 

(e.g., persons per square mile, BTUs per cubic foot).  

 

MGSE9-12.G.MG.3 Apply geometric methods to solve design problems (e.g., designing an object or 

structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on 

ratios).  

Mathematics | High School—Statistics and Probability 
 

Decisions or predictions are often based on data—numbers in context. These decisions or predictions 

would be easy if the data always sent a clear message, but the message is often obscured by variability. 

Statistics provides tools for describing variability in data and for making informed decisions that take it 

into account. 
 

Data are gathered, displayed, summarized, examined, and interpreted to discover patterns and deviations 

from patterns. Quantitative data can be described in terms of key characteristics: measures of shape, 

center, and spread. The shape of a data distribution might be described as symmetric, skewed, flat, or bell 

shaped, and it might be summarized by a statistic measuring center (such as mean or median) and a 

statistic measuring spread (such as standard deviation or interquartile range). Different distributions can 

be compared numerically using these statistics or compared visually using plots. Knowledge of center and 

spread are not enough to describe a distribution. Which statistics to compare, which plots to use, and what 

the results of a comparison might mean, depend on the question to be investigated and the real-life actions 

to be taken. 
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Randomization has two important uses in drawing statistical conclusions. First, collecting data from a 

random sample of a population makes it possible to draw valid conclusions about the whole population, 

taking variability into account. Second, randomly assigning individuals to different treatments allows a 

fair comparison of the effectiveness of those treatments. A statistically significant outcome is one that is 

unlikely to be due to chance alone, and this can be evaluated only under the condition of randomness. The 

conditions under which data are collected are important in drawing conclusions from the data; in critically 

reviewing uses of statistics in public media and other reports, it is important to consider the study design, 

how the data were gathered, and the analyses employed as well as the data summaries and the conclusions 

drawn. 
 

Random processes can be described mathematically by using a probability model: a list or description of 

the possible outcomes (the sample space), each of which is assigned a probability. In situations such as 

flipping a coin, rolling a number cube, or drawing a card, it might be reasonable to assume various 

outcomes are equally likely. In a probability model, sample points represent outcomes and combine to 

make up events; probabilities of events can be computed by applying the Addition and Multiplication 

Rules. Interpreting these probabilities relies on an understanding of independence and conditional 

probability, which can be approached through the analysis of two-way tables. 
 

Technology plays an important role in statistics and probability by making it possible to generate plots, 

regression functions, and correlation coefficients, and to simulate many possible outcomes in a short 

amount of time. 
 

Connections to Functions and Modeling: Functions may be used to describe data; if the data suggest a 

linear relationship, the relationship can be modeled with a regression line, and its strength and direction 

can be expressed through a correlation coefficient. 
 

Interpreting Categorical and Quantitative Data  S.ID 
 

Summarize, represent, and interpret data on two categorical and quantitative variables 
 

MGSE9-12.S.ID.6 Represent data on two quantitative variables on a scatter plot, and describe how the 

variables are related.  
 

MGSE9-12.S.ID.6a Decide which type of function is most appropriate by observing graphed 

data, charted data, or by analysis of context to generate a viable (rough) function of best fit.  Use 

this function to solve problems in context.  Emphasize linear, quadratic and exponential models.  
 

Conditional Probability and the Rules of Probability  S.CP 

 

Understand independence and conditional probability and use them to interpret data 
 

MGSE9-12.S.CP.1 Describe categories of events as subsets of a sample space using unions, 

intersections, or complements of other events (or, and, not). 

 

MGSE9-12.S.CP.2 Understand that if two events A and B are independent, the probability of A and B 

occurring together is the product of their probabilities, and that if the probability of two events A and B 

occurring together is the product of their probabilities, the two events are independent. 

 

MGSE9-12.S.CP.3 Understand the conditional probability of A given B as P (A and B)/P(B).  Interpret 

independence of A and B in terms of conditional probability; that is, the conditional probability of A 

given B is the same as the probability of A, and the conditional probability of B given A is the same as 

the probability of B.   
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MGSE9-12.S.CP.4 Construct and interpret two-way frequency tables of data when two categories are 

associated with each object being classified. Use the two-way table as a sample space to decide if events 

are independent and to approximate conditional probabilities. For example, use collected data from a 

random sample of students in your school on their favorite subject among math, science, and English. 

Estimate the probability that a randomly selected student from your school will favor science given that 

the student is in tenth grade. Do the same for other subjects and compare the results. 

 

MGSE9-12.S.CP.5 Recognize and explain the concepts of conditional probability and independence in 

everyday language and everyday situations. For example, compare the chance of having lung cancer if 

you are a smoker with the chance of being a smoker if you have lung cancer.  

 
Use the rules of probability to compute probabilities of compound events in a uniform probability 

model 
 

MGSE9-12.S.CP.6 Find the conditional probability of A given B as the fraction of B’s outcomes that 

also belong to A, and interpret the answer in context. 

 

MGSE9-12.S.CP.7 Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the 

answers in context. 

Mathematics | Standards for Mathematical Practice 
 

Mathematical Practices are listed with each grade’s mathematical content standards to reflect the need 

to connect the mathematical practices to mathematical content in instruction.  
 

The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all 

levels should seek to develop in their students. These practices rest on important “processes and 

proficiencies” with longstanding importance in mathematics education. The first of these are the NCTM 

process standards of problem solving, reasoning and proof, communication, representation, and 

connections. The second are the strands of mathematical proficiency specified in the National Research 

Council’s report Adding It Up: adaptive reasoning, strategic competence, conceptual understanding 

(comprehension of mathematical concepts, operations and relations), procedural fluency (skill in carrying 

out procedures flexibly, accurately, efficiently and appropriately), and productive disposition (habitual 

inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and 

one’s own efficacy).  
 

1 Make sense of problems and persevere in solving them.  
 

High school students start to examine problems by explaining to themselves the meaning of a problem 

and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. 

They make conjectures about the form and meaning of the solution and plan a solution pathway rather 

than simply jumping into a solution attempt. They consider analogous problems, and try special cases and 

simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate 

their progress and change course if necessary. Older students might, depending on the context of the 

problem, transform algebraic expressions or change the viewing window on their graphing calculator to 

get the information they need. By high school, students can explain correspondences between equations, 

verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph 

data, and search for regularity or trends.  They check their answers to problems using different methods 

and continually ask themselves, “Does this make sense?” They can understand the approaches of others to 

solving complex problems and identify correspondences between different approaches. 
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2 Reason abstractly and quantitatively.  

High school students seek to make sense of quantities and their relationships in problem situations. They 

abstract a given situation and represent it symbolically, manipulate the representing symbols, and pause as 

needed during the manipulation process in order to probe into the referents for the symbols involved. 

Students use quantitative reasoning to create coherent representations of the problem at hand; consider the 

units involved; attend to the meaning of quantities, not just how to compute them; and know and flexibly 

use different properties of operations and objects. 
 

3 Construct viable arguments and critique the reasoning of others.  

High school students understand and use stated assumptions, definitions, and previously established 

results in constructing arguments. They make conjectures and build a logical progression of statements to 

explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and 

can recognize and use counterexamples. They justify their conclusions, communicate them to others, and 

respond to the arguments of others. They reason inductively about data, making plausible arguments that 

take into account the context from which the data arose. High school students are also able to compare the 

effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, 

and—if there is a flaw in an argument—explain what it is. High school students learn to determine 

domains to which an argument applies, listen or read the arguments of others, decide whether they make 

sense, and ask useful questions to clarify or improve the arguments. 
 

4 Model with mathematics.  

High school students can apply the mathematics they know to solve problems arising in everyday life, 

society, and the workplace. By high school, a student might use geometry to solve a design problem or 

use a function to describe how one quantity of interest depends on another. High school students making 

assumptions and approximations to simplify a complicated situation, realizing that these may need 

revision later. They are able to identify important quantities in a practical situation and map their 

relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can 

analyze those relationships mathematically to draw conclusions. They routinely interpret their 

mathematical results in the context of the situation and reflect on whether the results make sense, possibly 

improving the model if it has not served its purpose. 
 

5 Use appropriate tools strategically.  

High school students consider the available tools when solving a mathematical problem. These tools 

might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a 

computer algebra system, a statistical package, or dynamic geometry software. High school students 

should be sufficiently familiar with tools appropriate for their grade or course to make sound decisions 

about when each of these tools might be helpful, recognizing both the insight to be gained and their 

limitations. For example, high school students analyze graphs of functions and solutions generated using 

a graphing calculator. They detect possible errors by strategically using estimation and other 

mathematical knowledge. When making mathematical models, they know that technology can enable 

them to visualize the results of varying assumptions, explore consequences, and compare predictions with 

data. They are able to identify relevant external mathematical resources, such as digital content located on 

a website, and use them to pose or solve problems. They are able to use technological tools to explore and 

deepen their understanding of concepts. 
 

6 Attend to precision. High school students try to communicate precisely to others by using clear 

definitions in discussion with others and in their own reasoning. They state the meaning of the symbols 

they choose, specifying units of measure, and labeling axes to clarify the correspondence with quantities 

in a problem. They calculate accurately and efficiently, express numerical answers with a degree of 

precision appropriate for the problem context. By the time they reach high school they have learned to 

examine claims and make explicit use of definitions. 
 

7 Look for and make use of structure. By high school, students look closely to discern a pattern or 

structure. In the expression x2 + 9x + 14, older students can see the 14 as 2 × 7 and the 9 as 2 + 7. They 

recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an 
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auxiliary line for solving problems. They also can step back for an overview and shift perspective. They 

can see complicated things, such as some algebraic expressions, as single objects or as being composed of 

several objects. For example, they can see 5 – 3(x – y)2 as 5 minus a positive number times a square and 

use that to realize that its value cannot be more than 5 for any real numbers x and y. High school students 

use these patterns to create equivalent expressions, factor and solve equations, and compose functions, 

and transform figures.  
 

8 Look for and express regularity in repeated reasoning.  

High school students notice if calculations are repeated, and look both for general methods and for 

shortcuts. Noticing the regularity in the way terms cancel when expanding (x – 1)(x + 1), (x – 1)(x2 + x + 

1), and (x – 1)(x3 + x2 + x + 1) might lead them to the general formula for the sum of a geometric series. 

As they work to solve a problem, derive formulas or make generalizations, high school students maintain 

oversight of the process, while attending to the details. They continually evaluate the reasonableness of 

their intermediate results. 

 

Connecting the Standards for Mathematical Practice to the Content Standards  
 

The Standards for Mathematical Practice describe ways in which developing student practitioners of the 

discipline of mathematics increasingly ought to engage with the subject matter as they grow in 

mathematical maturity and expertise throughout the elementary, middle and high school years. Designers 

of curricula, assessments, and professional development should all attend to the need to connect the 

mathematical practices to mathematical content in mathematics instruction.  
 

The Standards for Mathematical Content are a balanced combination of procedure and understanding. 

Expectations that begin with the word “understand” are often especially good opportunities to connect the 

practices to the content. Students who lack understanding of a topic may rely on procedures too heavily. 

Without a flexible base from which to work, they may be less likely to consider analogous problems, 

represent problems coherently, justify conclusions, apply the mathematics to practical situations, use 

technology mindfully to work with the mathematics, explain the mathematics accurately to other students, 

step back for an overview, or deviate from a known procedure to find a shortcut. In short, a lack of 

understanding effectively prevents a student from engaging in the mathematical practices.  
 

In this respect, those content standards which set an expectation of understanding are potential “points of 

intersection” between the Standards for Mathematical Content and the Standards for Mathematical 

Practice. These points of intersection are intended to be weighted toward central and generative concepts 

in the school mathematics curriculum that most merit the time, resources, innovative energies, and focus 

necessary to qualitatively improve the curriculum, instruction, assessment, professional development, and 

student achievement in mathematics. See Inside Math for more resources. 

 

Classroom Routines 

The importance of continuing the established classroom routines cannot be overstated. Daily routines 

must include such obvious activities as estimating, analyzing data, describing patterns, and answering 

daily questions.  They should also include less obvious routines, such as how to select materials, how to 

use materials in a productive manner, how to put materials away, and how to access classroom technology 

such as computers and calculators.  An additional routine is to allow plenty of time for students to explore 

new materials before attempting any directed activity with these new materials.  The regular use of 

routines is important to the development of students' number sense, flexibility, fluency, collaborative 

skills and communication. These routines contribute to a rich, hands-on standards based classroom and 

will support students’ performances on the tasks in this unit and throughout the school year. 

Strategies for Teaching and Learning 

• Students should be actively engaged by developing their own understanding. 

http://www.insidemathematics.org/index.php/exemplary-lessons-integrating-practice-standards
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• Mathematics should be represented in as many ways as possible by using graphs, tables, pictures, 

symbols and words. 

• Interdisciplinary and cross curricular strategies should be used to reinforce and extend the 

learning activities.  

• Appropriate manipulatives and technology should be used to enhance student learning. 

• Students should be given opportunities to revise their work based on teacher feedback, peer 

feedback, and metacognition which includes self-assessment and reflection. 

• Students should write about the mathematical ideas and concepts they are learning. 

• Consideration of all students should be made during the planning and instruction of this unit. 

Teachers need to consider the following: 

 What level of support do my struggling students need in order to be successful with this 

unit? 

 In what way can I deepen the understanding of those students who are competent in this 

unit?  

 What real life connections can I make that will help my students utilize the skills 

practiced in this unit? 

 

Tasks 

 The following tasks represent the level of depth, rigor, and complexity expected of all Analytic 

Geometry students.  These tasks, or tasks of similar depth and rigor, should be used to demonstrate 

evidence of learning.  It is important that all elements of a task be addressed throughout the learning 

process so that students understand what is expected of them.  While some tasks are identified as a 

performance task, they may also be used for teaching and learning (learning/scaffolding task). 

Scaffolding Task Tasks that build up to the learning task. 

Learning Task Constructing understanding through deep/rich contextualized problem solving 

tasks. 

Practice Task Tasks that provide students opportunities to practice skills and concepts. 

Performance Task Tasks which may be a formative or summative assessment that checks for 

student understanding/misunderstanding and or progress toward the 

standard/learning goals at different points during a unit of instruction. 

Culminating Task Designed to require students to use several concepts learned during the unit to 

answer a new or unique situation.  Allows students to give evidence of their 

own understanding toward the mastery of the standard and requires them to 

extend their chain of mathematical reasoning. 

Short Cycle Task Designed to exemplify the performance targets that the standards imply. The 

tasks, with the associated guidance, equip teachers to monitor overall progress 

in their students’ mathematics. 

Formative Assessment 

Lesson (FAL) 

*more information on 

page 24 

Lessons that support teachers in formative assessment which both reveal and 

develop students’ understanding of key mathematical ideas and applications.  

These lessons enable teachers and students to monitor in more detail their 

progress towards the targets of the standards.   

3-Act Task 

*more information on 
A Three-Act Task is a whole group mathematics task consisting of 3 distinct 

parts: an engaging and perplexing Act One, an information and solution 
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page 25 seeking Act Two, and a solution discussion and solution revealing Act Three. 
Achieve CCSS- CTE 

Classroom Tasks 

Designed to demonstrate how the Common Core and Career and Technical 

Education knowledge and skills can be integrated. The tasks provide teachers 

with realistic applications that combine mathematics and CTE content.   
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Formative Assessment Lessons (FALs) 
 

The Formative Assessment Lesson is designed to be part of an instructional unit typically implemented 

approximately two-thirds of the way through the instructional unit.  The results of the tasks should then 

be used to inform the instruction that will take place for the remainder of the unit.  

Formative Assessment Lessons are intended to support teachers in formative assessment. They both 

reveal and develop students’ understanding of key mathematical ideas and applications. These lessons 

enable teachers and students to monitor in more detail their progress towards the targets of the standards. 

They assess students’ understanding of important concepts and problem solving performance, and help 

teachers and their students to work effectively together to move each student’s mathematical reasoning 

forward. 

Videos of Georgia Teachers implementing FALs can be accessed HERE and a sample of a FAL lesson 

may be seen HERE 

More information on types of Formative Assessment Lessons, their use, and their implementation may be 

found on the Math Assessment Project’s guide for teachers. 

Formative Assessment Lessons can also be found at the following sites: 

Mathematics Assessment Project 

Kenton County Math Design Collaborative 

MARS Tasks by grade level 

A sample FAL with extensive dialog and suggestions for teachers may be found HERE.  This resource 

will help teachers understand the flow and purpose of a FAL. 

The Math Assessment Project has developed Professional Development Modules that are 

designed to help teachers with the practical and pedagogical challenges presented by these 

lessons. 

Module 1 introduces the model of formative assessment used in the lessons, its theoretical 

background and practical implementation. Modules 2 & 3 look at the two types of Classroom 

Challenges in detail. Modules 4 & 5 explore two crucial pedagogical features of the lessons: 

asking probing questions and collaborative learning. 

Georgia RESA’s may be contacted about professional development on the use of FALs in the classroom. 

The request should be made through the teacher's local RESA and can be referenced by asking for more 

information on the Mathematics Design Collaborative (MDC). 
 

Spotlight Tasks 
 

A Spotlight Task has been added to each GSE mathematics unit in the Georgia resources for middle and 

high school.  The Spotlight Tasks serve as exemplars for the use of the Standards for Mathematical 

Practice, appropriate unit-level Georgia Standards of Excellence, and research-based pedagogical 

strategies for instruction and engagement. Each task includes teacher commentary and support for 

classroom implementation.  Some of the Spotlight Tasks are revisions of existing Georgia tasks and some 

are newly created.  Additionally, some of the Spotlight Tasks are 3-Act Tasks based on 3-Act Problems 

from Dan Meyer and Problem-Based Learning from Robert Kaplinsky.   

https://www.georgiastandards.org/Common-Core/Pages/Mathematics-Formative-Assessment-Lessons-Videos.aspx
http://www.warrencountyschools.org/olc/page.aspx?id=78698&s=2608
http://map.mathshell.org/guides/map_cc_teacher_guide.pdf
http://map.mathshell.org/materials/index.php
http://kentoncountymdc.wikispaces.com/home
http://scoe.org/pub/htdocs/ccss-mathematics.html
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&cad=rja&ved=0CFIQFjAF&url=http%3A%2F%2Feducore.ascd.org%2Fresource%2Fdownload%2Fget.ashx%3Fguid%3De35ed6b7-cf7c-49e8-87b0-d79994d4e743&ei=SfmtUazaBIr29gSjmIHAAw&usg=AFQjCNEsXL0KLdKdHTTPMLZvEZ5efSfjjQ
http://map.mathshell.org/materials/index.php?subpage=about
http://map.mathshell.org/static/draft/pd/modules/1_Formative_Assessment/html/index.htm
http://map.mathshell.org/static/draft/pd/modules/2_Concept_Lessons/html/index.htm
http://map.mathshell.org/static/draft/pd/modules/3_Problem_Solving/html/index.htm
http://map.mathshell.org/static/draft/pd/modules/4_Questioning/html/index.htm
http://map.mathshell.org/static/draft/pd/modules/5_Collaborative_work/html/index.htm
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3-Act Tasks 
 

A Three-Act Task is a whole group mathematics task consisting of 3 distinct parts: an engaging and 

perplexing Act One, an information and solution seeking Act Two, and a solution discussion and solution 

revealing Act Three.   

 
Guidelines for 3-Act Tasks and Patient Problem Solving (Teaching without the Textbook) 

Adapted from Dan Meyer 

 

Developing the mathematical Big Idea behind the 3-Act task: 

• Create or find/use a clear visual which tells a brief, perplexing mathematical story. Video or live 

action works best. (See resource suggestions in the Guide to 3-Act Tasks)  

• Video/visual should be real life and allow students to see the situation unfolding. 

• Remove the initial literacy/mathematics concerns. Make as few language and/or math demands 

on students as possible. You are posing a mathematical question without words.   

• The visual/video should inspire curiosity or perplexity which will be resolved via the 

mathematical big idea(s) used by students to answer their questions. You are creating an 

intellectual need or cognitive dissonance in students.  

 

Enacting the 3-Act in the Classroom 

 

Act 1 (The Question): 

Set up student curiosity by sharing a scenario: 

• Teacher says, “I’m going show you something I came across and found interesting” or, 

“Watch this.” 

• Show video/visual. 

• Teacher asks, “What do you notice/wonder?” and “What are the first questions that come to 

mind?” 

• Students share observations/questions with a partner first, then with the class (Think-Pair-

Share). Students have ownership of the questions because they posed them. 

• Leave no student out of this questioning. Every student should have access to the scenario. 

No language or mathematical barriers. Low barrier to entry. 

• Teacher records questions (on chart paper or digitally-visible to class) and ranks them by 

popularity. 

• Determine which question(s) will be immediately pursued by the class. If you have a 

particular question in mind, and it isn’t posed by students, you may have to do some skillful 

prompting to orient their question to serve the mathematical end. However, a good video 

should naturally lead to the question you hope they’ll ask. You may wish to pilot your video 

on colleagues before showing it to students. If they don’t ask the question you are after, your 

video may need some work. 

• Teacher asks for estimated answers in response to the question(s). Ask first for best estimates, 

then request estimates which are too high and too low. Students are no defining and 

defending parameters for making sense of forthcoming answers. 

• Teacher asks students to record their actual estimation for future reference. 

 

Act 2 (Information Gathering): 

Students gather information, draw on mathematical knowledge, understanding, and resources to 

answer the big question(s) from Act-1: 

• Teacher asks, “What information do you need to answer our main question?” 

• Students think of the important information they will need to answer their questions. 

• Ask, “What mathematical tools do you have already at your disposal which would be useful 

in answering this question?”   
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• What mathematical tools might be useful which students don’t already have? Help them 

develop those.  

• Teacher offers smaller examples and asks probing questions. 

o What are you doing?  

o Why are you doing that?  

o What would happen if…? 

o Are you sure? How do you know? 

 

Act 3 (The Reveal): 

The payoff. 

• Teacher shows the answer and validates students’ solutions/answer. 

• Teacher revisits estimates and determines closest estimate. 

• Teacher compares techniques, and allows students to determine which is most efficient. 

 

The Sequel: 

• Students/teacher generalize the math to any case, and “algebrafy” the problem. 

• Teacher poses an extension problem- best chance of student engagement if this extension 

connects to one of the many questions posed by students which were not the focus of Act 2, 

or is related to class discussion generated during Act 2. 

• Teacher revisits or reintroduces student questions that were not addressed in Act 2. 

Why Use 3-Act Tasks?  A Teacher’s Response 
 

The short answer:  It's what's best for kids! 

 

If you want more, read on: 

 

The need for students to make sense of problems can be addressed through tasks like these.  The 

challenge for teachers is, to quote Dan Meyer, “be less helpful.”  (To clarify, being less helpful means to 

first allow students to generate questions they have about the picture or video they see in the first act, then 

give them information as they ask for it in act 2.)  Less helpful does not mean give these tasks to students 

blindly, without support of any kind! 

 

This entire process will likely cause some anxiety (for all).  When jumping into 3-Act tasks for the first 

(second, third, . . .) time, students may not generate the suggested question.  As a matter of fact, in 

this task about proportions and scale, students may ask many questions that are curious questions, but 

have nothing to do with the mathematics you want them to investigate.  One question might be “How is 

that ball moving by itself?”  It’s important to record these and all other questions generated by 

students.  This validates students' ideas.  Over time, students will become accustomed to the routine of 3-

act tasks and come to appreciate that there are certain kinds of mathematically answerable questions – 

most often related to quantity or measurement. 

 

These kinds of tasks take time, practice and patience.  When presented with options to use problems like 

this with students, the easy thing for teachers to do is to set them aside for any number of 

"reasons."  I've highlighted a few common "reasons" below with my commentary (in blue): 

 

• This will take too long.  I have a lot of content to cover.  (Teaching students to think and reason is 

embedded in mathematical content at all levels - how can you not take this time) 

• They need to be taught the skills first, then maybe I’ll try it.  (An important part of learning 

mathematics lies in productive struggle and learning to persevere [SMP 1].  What better way to 

discern what students know and are able to do than with a mathematical context [problem] that 

https://www.ted.com/talks/dan_meyer_math_curriculum_makeover
http://mikewiernicki3act.wordpress.com/sphero-draw-drive/
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lets them show you, based on the knowledge they already have - prior to any new information. To 

quote John Van de Walle, “Believe in kids and they will, flat out, amaze you!”) 

• My students can’t do this.  (Remember, whether you think they can or they can’t, you’re 

right!)  (Also, this expectation of students persevering and solving problems is in every state's 

standards - and was there even before common core!) 

• I'm giving up some control.  (Yes, and this is a bit scary.  You're empowering students to think 

and take charge of their learning.  So, what can you do to make this less scary?  Do what we 

expect students to do:   

o Persevere.  Keep trying these and other open-beginning, -middle, and -ended 

problems.  Take note of what's working and focus on it! 

o Talk with a colleague (work with a partner).  Find that critical friend at school, another 

school, online. . . 

o Question (use #MTBoS on Twitter, or blogs, or Google: 3-act tasks).   

The benefits of students learning to question, persevere, problem solve, and reason mathematically far 

outweigh any of the reasons (read excuses) above.  The time spent up front, teaching through tasks such 

as these and other open problems, creates a huge pay-off later on.  However, it is important to note, that 

the problems themselves are worth nothing without teachers setting the expectation that 

students:  question, persevere, problem solve, and reason mathematically on a daily basis.  Expecting 

these from students, and facilitating the training of how to do this consistently and with fidelity is 

principal to success for both students and teachers. 

Yes, all of this takes time.  For most of my classes, mid to late September (we start school at the 

beginning of August) is when students start to become comfortable with what problem solving really 

is.  It's not word problems - mostly. It's not the problem set you do after the skill practice in the 

textbook.  Problem solving is what you do when you don't know what to do!  This is difficult to teach 

kids and it does take time.  But it is worth it!  More on this in a future blog! 

Tips: 

One strategy I've found that really helps students generate questions is to allow them to talk to their peers 

about what they notice and wonder first (Act 1).  Students of all ages will be more likely to share once 

they have shared and tested their ideas with their peers.  This does take time.  As you do more of these 

types of problems, students will become familiar with the format and their comfort level may allow you to 

cut the amount of peer sharing time down before group sharing. 

What do you do if they don’t generate the question suggested?  Well, there are several ways that this can 

be handled.  If students generate a similar question, use it.  Allowing students to struggle through their 

question and ask for information is one of the big ideas here.  Sometimes, students realize that they may 

need to solve a different problem before they can actually find what they want.  If students are way off, in 

their questions, teachers can direct students, carefully, by saying something like:  “You all have generated 

some interesting questions.  I’m not sure how many we can answer in this class.  Do you think there’s a 

question we could find that would allow us to use our knowledge of mathematics to find the answer to 

(insert quantity or measurement)?”  Or, if they are really struggling, you can, again carefully, say “You 

know, I gave this problem to a class last year (or class, period, etc) and they asked (insert something 

similar to the suggested question here).  What do you think about that?”  Be sure to allow students to 

share their thoughts. 

After solving the main question, if there are other questions that have been generated by students, it’s 

important to allow students to investigate these as well.  Investigating these additional questions validates 

students’ ideas and questions and builds a trusting, collaborative learning relationship between students 

and the teacher. 
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Overall, we're trying to help our students mathematize their world.  We're best able to do that when we 

use situations that are relevant (no dog bandanas, please), engaging (create an intellectual need to know), 

and perplexing.  If we continue to use textbook type problems that are too helpful, uninteresting, and let's 

face it, perplexing in all the wrong ways, we're not doing what's best for kids; we're training them to not 

be curious, not think, and worst of all . . . dislike math. 

3-Act Task Resources: 

• www.estimation180.com 

• www.visualpatterns.org 

• 101 Questions 

• Dan Meyer's 3-Act Tasks 

• 3-Act Tasks for Elementary and Middle School 

• Andrew Stadel 

• Jenise Sexton 

• Graham Fletcher 

• Fawn Nguyen 

• Robert Kaplinsky 

• Open Middle 

• Check out the Math Twitter Blog-o-Sphere (MTBoS) - you’ll find tons of support and ideas! 

 

Assessment Resources and Instructional Support Resources 
 

The resource sites listed below are provided by the GADOE and are designed to support the instructional 

and assessment needs of teachers.  All BLUE links will direct teachers to the site mentioned. 

• Georgiastandards.org provides a gateway to a wealth of instructional links and information.  

Select the ELA/Math tab at the top to access specific math resources for GSE.  

 

• MGSE Frameworks are "models of instruction" designed to support teachers in the 

implementation of the Georgia Standards of Excellence (GSE).  The Georgia Department of 

Education, Office of Standards, Instruction, and Assessment has provided an example of the 

Curriculum Map for each grade level and examples of Frameworks aligned with the GSE to 

illustrate what can be implemented within the grade level. School systems and teachers are free to 

use these models as is; modify them to better serve classroom needs; or create their own 

curriculum maps, units and tasks. http://bit.ly/1AJddmx 
 

• The Teacher Resource Link   (TRL) is an application that delivers vetted and aligned digital 

resources to Georgia’s teachers. TRL is accessible via the GADOE “tunnel” in conjunction with 

SLDS using the single sign-on process. The content is pushed to teachers based on course 

schedule.  

• Georgia Virtual School content available on our Shared Resources Website is available for 

anyone to view.  Courses are divided into modules and are aligned with the Georgia Standards of 

Excellence.    

https://mikewiernicki.wordpress.com/wp-admin/www.estimation180.com
https://mikewiernicki.wordpress.com/wp-admin/www.visualpatterns.org
http://www.101qs.com/
https://docs.google.com/spreadsheet/ccc?key=0AjIqyKM9d7ZYdEhtR3BJMmdBWnM2YWxWYVM1UWowTEE#gid=0
https://docs.google.com/spreadsheet/ccc?key=0Are6h0vMbntddGVlQkE2VzgyZkdJb3NBWWwtamhJQXc&usp=drive_web#gid=0
http://mr-stadel.blogspot.com/
http://doesthismake.blogspot.com/
http://gfletchy.wordpress.com/
http://fawnnguyen.com/
http://robertkaplinsky.com/
http://www.openmiddle.com/
https://www.georgiastandards.org/Pages/Default.aspx
https://www.georgiastandards.org/Common-Core/Pages/Math.aspx
https://www.georgiastandards.org/Common-Core/Pages/Math.aspx
http://www.gadoe.org/Technology-Services/Instructional-Technology/Pages/Teacher-Resource-Link.aspx
http://www.gavirtuallearning.org/Resources.aspx
http://www.gavirtuallearning.org/Resources.aspx


Georgia Department of Education 

Analytic Geometry Course Curriculum Overview 

July 2019 • Page 27 of 28 

• The Georgia Online Formative Assessment Resource (GOFAR) accessible through SLDS 

contains test items related to content areas assessed by the Georgia Milestones Assessment 

System and NAEP.  Teachers and administrators can utilize the GOFAR to develop formative 

and summative assessments, aligned to the state-adopted content standards, to assist in informing 

daily instruction.  

 

The Georgia Online Formative Assessment Resource (GOFAR) provides the ability for Districts 

and Schools to assign benchmark and formative test items/tests to students in order to obtain 

information about student progress and instructional practice. GOFAR allows educators and their 

students to have access to a variety of test items – selected response and constructed response – 

that are aligned to the State-adopted content standards for Georgia’s elementary, middle, and high 

schools. 

 

Students, staff, and classes are prepopulated and maintained through the State Longitudinal Data 

System (SLDS).  Teachers and Administrators may view Exemplars and Rubrics in Item Preview. 

A scoring code may be distributed at a local level to help score constructed response items. 

 

For GOFAR user guides and overview, please visit: 

https://www.gadoe.org/Curriculum-Instruction-and-Assessment/Assessment/Pages/Georgia-

Online-Formative-Assessment-Resource.aspx 

 

• Georgia Milestones Assessment System resources can be found at: 

http://www.gadoe.org/Curriculum-Instruction-and-Assessment/Assessment/Pages/Georgia-

Milestones-Assessment-System.aspx 

Features the Georgia Milestones Assessment System include: 

o   Open-ended (constructed-response) items 

o Norm-referenced to complement the criterion-referenced information and to provide a 

national comparison; 

o Transition to online administration over time, with online administration considered the 

primary mode of administration and paper-pencil as back-up until the transition is 

complete. 

 

Internet Resources 
 

The following list is provided as a sample of available resources and is for informational purposes only. It 

is your responsibility to investigate them to determine their value and appropriateness for your district. 

GADOE does not endorse or recommend the purchase of or use of any particular resource.  
 

General Resources 
 

Illustrative Mathematics 

Standards are illustrated with instructional and assessment tasks, lesson plans, and other curriculum 

resources.  
 

Mathematics in Movies 

Short movie clips related to a variety of math topics. 
 

Mathematical Fiction 

Plays, short stories, comic books and novels dealing with math. 
 

The Shodor Educational Foundation 

This website has extensive notes, lesson plans and applets aligned with the standards. 
 

NEA Portal Arkansas Video Lessons on-line   

https://www.gadoe.org/Curriculum-Instruction-and-Assessment/Assessment/Pages/Georgia-Online-Formative-Assessment-Resource.aspx
https://www.gadoe.org/Curriculum-Instruction-and-Assessment/Assessment/Pages/Georgia-Online-Formative-Assessment-Resource.aspx
http://www.gadoe.org/Curriculum-Instruction-and-Assessment/Assessment/Pages/Georgia-Milestones-Assessment-System.aspx
http://www.gadoe.org/Curriculum-Instruction-and-Assessment/Assessment/Pages/Georgia-Milestones-Assessment-System.aspx
http://www.gadoe.org/Curriculum-Instruction-and-Assessment/Assessment/Pages/Georgia-Milestones-Assessment-System.aspx
http://www.illustrativemathematics.org/
http://www.math.harvard.edu/~knill/mathmovies/
http://kasmana.people.cofc.edu/MATHFICT/browse.php
http://www.shodor.org/interactivate/lessons/byAudience/
http://neaportal.k12.ar.us/index.php/9th-12th-grades-mathematics/
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The NEA portal has short videos aligned to each standard.  This resource may be very helpful for students 

who need review at home. 
 

Learnzillion 

This is another good resource for parents and students who need a refresher on topics. 

 

Math Words 

This is a good reference for math terms. 
 

National Library of Virtual Manipulatives 

 Java must be enabled for this applet to run.  This website has a wealth of virtual manipulatives helpful for 

use in presentation.  The resources are listed by domain. 
 

Geogebra Download 

Free software similar to Geometer’s Sketchpad.  This program has applications for algebra, geometry, and 

statistics. 
 

Utah Resources 

Open resource created by the Utah Education Network. 
 

Resources for Problem-based Learning 
 

Dan Meyer’s Website    

Dan Meyer has created many problem-based learning tasks.  The tasks have great hooks for the students 

and are aligned to the standards in this spreadsheet. 
 

Andrew Stadel 

Andrew Stadel has created many problem-based learning tasks using the same format as Dan Meyer.  
 

Robert Kaplinsky  

Robert Kaplinsky has created many tasks that engage students with real life situations. 
 

Geoff Krall’s Emergent Math   

Geoff Krall has created a curriculum map structured around problem-based learning tasks. 
 

 

 

 

 

 

http://learnzillion.com/common_core/math/hs
http://www.mathwords.com/
http://nlvm.usu.edu/en/nav/vlibrary.html
http://nlvm.usu.edu/en/nav/vlibrary.html
http://www.geogebra.org/cms/download
http://www.uen.org/k12educator/uenresources.php?cat=Mathematics
http://blog.mrmeyer.com/
https://docs.google.com/spreadsheet/ccc?key=0AjIqyKM9d7ZYdEhtR3BJMmdBWnM2YWxWYVM1UWowTEE#gid=0
https://docs.google.com/spreadsheet/ccc?key=0AkLk45wwjYBudG9LeXRad0lHM0E0VFRyOEtRckVvM1E#gid=0
http://robertkaplinsky.com/lessons/
http://emergentmath.com/my-problem-based-curriculum-maps/

