Georgia Standards of Excellence
Curriculum Frameworks

Mathematics

GSE Coordinate Algebra

Unit 3: Linear and Exponential Functions
Unit 3
Linear and Exponential Functions

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERVIEW</td>
<td>3</td>
</tr>
<tr>
<td>STANDARDS ADDRESSED IN THIS UNIT</td>
<td>3</td>
</tr>
<tr>
<td>ENDURING UNDERSTANDINGS</td>
<td>7</td>
</tr>
<tr>
<td>ESSENTIAL QUESTIONS</td>
<td>7</td>
</tr>
<tr>
<td>CONCEPTS AND SKILLS TO MAINTAIN</td>
<td>8</td>
</tr>
<tr>
<td>SELECTED TERMS AND SYMBOLS</td>
<td>8</td>
</tr>
<tr>
<td>EVIDENCE OF LEARNING</td>
<td>10</td>
</tr>
<tr>
<td>TEACHER RESOURCES</td>
<td>12</td>
</tr>
<tr>
<td>Web Resources</td>
<td>12</td>
</tr>
<tr>
<td>Compare / Contrast: Linear and Exponential Functions</td>
<td>14</td>
</tr>
<tr>
<td>Graphic Organizer: Graphing Transformations</td>
<td>16</td>
</tr>
<tr>
<td>SPOTLIGHT TASKS</td>
<td>17</td>
</tr>
<tr>
<td>3-ACT TASKS</td>
<td>17</td>
</tr>
<tr>
<td>TASKS</td>
<td>18</td>
</tr>
<tr>
<td>Talk is Cheap (Spotlight Task)</td>
<td>21</td>
</tr>
<tr>
<td>Functioning Well! (Practice Task)</td>
<td>26</td>
</tr>
<tr>
<td>Skeleton Tower (Short Cycle Task)</td>
<td>33</td>
</tr>
<tr>
<td>The Detention Buy-Out (Spotlight Task)</td>
<td>35</td>
</tr>
<tr>
<td>Comparing Investments (Formative Assessment Lesson)</td>
<td>38</td>
</tr>
<tr>
<td>Best Buy Tickets (Short Cycle Task)</td>
<td>40</td>
</tr>
<tr>
<td>Multiplying Cells (Short Cycle Task)</td>
<td>42</td>
</tr>
<tr>
<td>You’re Toast, Dude! (Scaffolding Task)</td>
<td>44</td>
</tr>
<tr>
<td>Community Service, Sequences, and Functions (Performance Task)</td>
<td>52</td>
</tr>
<tr>
<td>Having Kittens (Formative Assessment Lesson)</td>
<td>63</td>
</tr>
<tr>
<td>Interpreting Functions (Short Cycle Task)</td>
<td>65</td>
</tr>
<tr>
<td>Birthday Gifts and Turtle Problem (FAL)</td>
<td>68</td>
</tr>
<tr>
<td>Exploring Paths (FAL)</td>
<td>70</td>
</tr>
<tr>
<td>High Functioning! (Practice Task)</td>
<td>71</td>
</tr>
<tr>
<td>Summing It Up: Putting the “Fun” in Functions (Culminating Task)</td>
<td>79</td>
</tr>
<tr>
<td>ADDITIONAL TASKS</td>
<td>92</td>
</tr>
</tbody>
</table>
OVERVIEW

In this unit students will:

- Represent and solve linear equations and inequalities graphically using real-world contexts.
- Use function notation.
- Interpret linear and exponential functions that arise in applications in terms of the context.
- Analyze linear and exponential functions and model how different representations may be used based on the situation presented.
- Build a function to model a relationship between two quantities.
- Create new functions from existing functions.
- Construct and compare linear and exponential models and solve problems.
- Interpret expressions for functions in terms of the situation they model.

Because we continually make theories about dependencies between quantities in nature and society, functions are important tools in the construction of mathematical models. A function can be described in various ways, such as by a graph (e.g., the trace of a seismograph); by a verbal rule, as in, “I’ll give you a state, you give me the capital city;” by an algebraic expression like \(f(x) = ax + bx \); or by a recursive rule. The graph of a function is often a useful way of visualizing the relationship of the function models, and manipulating a mathematical expression for a function can throw light on the function’s properties.

Although the units in this instructional framework emphasize key standards and big ideas at specific times of the year, routine topics such as estimation, mental computation, and basic computation facts should be addressed on an ongoing basis. Ideas related to the eight practice standards should be addressed constantly as well. This unit provides much needed content information and excellent learning activities. However, the intent of the framework is not to provide a comprehensive resource for the implementation of all standards in the unit. A variety of resources should be utilized to supplement this unit. The tasks in this unit framework illustrate the types of learning activities that should be utilized from a variety of sources. To assure that this unit is taught with the appropriate emphasis, depth, and rigor, it is important that the “Strategies for Teaching and Learning” and the tasks listed under “Evidence of Learning” be reviewed early in the planning process.

STANDARDS ADDRESSED IN THIS UNIT

Mathematical standards are interwoven and should be addressed throughout the year in as many different units and activities as possible in order to emphasize the natural connections that exist among mathematical topics.

KEY STANDARDS ADDRESSED

Represent and solve equations and inequalities graphically

MGSE9-12.A.REI.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane.
MGSE9-12.A.REI.11 Using graphs, tables, or successive approximations, show that the solution to the equations \(f(x) = g(x) \) is the \(x \)-value where the \(y \)-values of \(f(x) \) and \(g(x) \) are the same. Include cases where \(f(x) \) and/or \(g(x) \) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

Understand the concept of a function and use function notation

MGSE9-12.F.IF.1 Understand that a function from one set (the input, called the domain) to another set (the output, called the range) assigns to each element of the domain exactly one element of the range, i.e. each input value maps to exactly one output value. If \(f \) is a function, \(x \) is the input (an element of its domain) and \(f(x) \) is the output (an element of the range). Graphically, the graph is \(y = f(x) \). *(Draw examples from linear and exponential functions.)*

MGSE9-12.F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. *(Draw examples from linear and exponential functions.)*

MGSE9-12.F.IF.3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. (Generally, the scope of high school math defines this subset as the set of natural numbers 1, 2, 3, 4, …) By graphing or calculating terms, students should be able to show how the recursive sequence \(a_1 = 7, a_n = a_{n-1} + 2 \); the sequence \(s_n = 2(n - 1) + 7 \); and the function \(f(x) = 2x + 5 \) (when \(x \) is a natural number) all define the same sequence. *(Draw connection to F.BF.2, which requires students to write arithmetic and geometric sequences.)*

Interpret functions that arise in applications in terms of the context

MGSE9-12.F.IF.4 Using tables, graphs, and verbal descriptions, interpret the key characteristics of a function which models the relationship between two quantities. Sketch a graph showing key features including: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.

MGSE9-12.F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *For example, if the function \(h(n) \) gives the number of person-hours it takes to assemble \(n \) engines in a factory, then the positive integers would be an appropriate domain for the function. (Focus on linear and exponential functions.)*

MGSE9-12.F.IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. *(Focus on linear functions and intervals for exponential functions whose domain is a subset of the integers.)*
Analyze functions using different representations

MGSE-12.F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (*Focus on linear and exponential functions. Include comparisons of two functions presented algebraically.*)

MGSE-12.F.IF.7a Graph linear and quadratic functions and show intercepts, maxima, and minima (as determined by the function or by context).

MGSE-12.F.IF.7e Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

MGSE-12.F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). (*Focus on linear and exponential functions. Include comparisons of two functions presented algebraically.*)

Build a function that models a relationship between two quantities

MGSE-12.F.BF.1 Write a function that describes a relationship between two quantities. (*Limit to linear and exponential functions.*)

MGSE-12.F.BF.1a Determine an explicit expression, a recursive process (steps for calculation) from a context. *For example, if Jimmy starts out with $15 and earns $2 a day, the explicit expression “2x + 15” can be described recursively (either in writing or verbally) as “to find out how much money Jimmy will have tomorrow, you add $2 to his total today.” Jn = Jn – 1 + 2, J0 = 15. (*Limit to linear and exponential functions.*)

MGSE-12.F.BF.2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. Connect arithmetic sequences to linear functions and geometric sequences to exponential functions.

Build new functions from existing functions

MGSE-12.F.BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. *Include recognizing even and odd functions from their graphs and algebraic expressions for them. (Focus on vertical translations of graphs of linear and exponential functions. Relate the vertical translation of a linear function to its y-intercept.*)

MGSE-12.F.LE.1 Distinguish between situations that can be modeled with linear functions and with exponential functions.
MGSE9-12.F.LE.1a Prove that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.

MGSE9-12.F.LE.1b Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

MGSE9-12.F.LE.1c Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

MGSE9-12.F.LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

MGSE9-12.F.LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

MGSE9-12.F.LE.5 Interpret the parameters in a linear or exponential function in terms of a context. \(\text{(Limit exponential functions to those of the form } f(x) = b^x + k\text{.)}\)

STANDARDS FOR MATHEMATICAL PRACTICE
Refer to the Comprehensive Course Overview for more detailed information about the Standards for Mathematical Practice.

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.
ENDURING UNDERSTANDINGS

- Linear equations and inequalities can be represented graphically and solved using real-world context.

- Understand the concept of a function and be able to use function notation.

- Understand how to interpret linear and exponential functions that arise in applications in terms of the context.

- When analyzing linear and exponential functions, different representations may be used based on the situation presented.

- A function may be built to model a relationship between two quantities.

- New functions can be created from existing functions.

- Understand how to construct and compare linear and exponential models and solve problems.

- Understand how to interpret expressions for functions in terms of the situation they model.

ESSENTIAL QUESTIONS

- How do I use graphs to represent and solve real-world equations and inequalities?

- Why is the concept of a function important and how do I use function notation to show a variety of situations modeled by functions?

- How do I interpret functions that arise in applications in terms of context?

- How do I use different representations to analyze linear and exponential functions?

- How do I build a linear or exponential function that models a relationship between two quantities?

- How do I build new functions from existing functions?

- How can we use real-world situations to construct and compare linear and exponential models and solve problems?

- How do I interpret expressions for functions in terms of the situation they model?
CONCEPTS AND SKILLS TO MAINTAIN

In order for students to be successful, the following skills and concepts need to be maintained:

- Know how to solve equations, using the distributive property, combining like terms and equations with variables on both sides.

- Know how to solve systems of linear equations.

- Understand and be able to explain what a function is.

- Determine if a table, graph or set of ordered pairs is a function.

- Distinguish between linear and non-linear functions.

- Write linear equations and use them to model real-world situations.

SELECTED TERMS AND SYMBOLS

The following terms and symbols are often misunderstood. These concepts are not an inclusive list and should not be taught in isolation. However, due to evidence of frequent difficulty and misunderstanding associated with these concepts, instructors should pay particular attention to them and how their students are able to explain and apply them.

The definitions below are for teacher reference only and are not to be memorized by the students. Students should explore these concepts using models and real life examples. Students should understand the concepts involved and be able to recognize and/or demonstrate them with words, models, pictures, or numbers.

The websites below are interactive and include a math glossary suitable for high school children. Note – At the high school level, different sources use different definitions. Please preview any website for alignment to the definitions given in the frameworks

http://www.amathsdictionaryforkids.com/

This web site has activities to help students more fully understand and retain new vocabulary.

http://intermath.coe.uga.edu/dictnary/homepg.asp

Definitions and activities for these and other terms can be found on the Intermath website. Intermath is geared towards middle and high school students.

- Arithmetic Sequence. A sequence of numbers in which the difference between any two consecutive terms is the same.
Average Rate of Change. The change in the value of a quantity by the elapsed time. For a function, this is the change in the y-value divided by the change in the x-value for two distinct points on the graph.

Coefficient. A number multiplied by a variable in an algebraic expression.

Constant Rate of Change. With respect to the variable x of a linear function \(y = f(x) \), the constant rate of change is the slope of its graph.

Continuous. Describes a connected set of numbers, such as an interval.

Discrete. A set with elements that are disconnected.

Domain. The set of x-coordinates of the set of points on a graph; the set of x-coordinates of a given set of ordered pairs. The value that is the input in a function or relation.

End Behaviors. The appearance of a graph as it is followed farther and farther in either direction.

Explicit Expression. A formula that allows direct computation of any term for a sequence \(a_1, a_2, a_3, \ldots, a_n, \ldots \).

Exponential Function. A nonlinear function in which the independent value is an exponent in the function, as in \(y = ab^x \).

Exponential Model. An exponential function representing real-world phenomena. The model also represents patterns found in graphs and/or data.

Expression. Any mathematical calculation or formula combining numbers and/or variables using sums, differences, products, quotients including fractions, exponents, roots, logarithms, functions, or other mathematical operations.

Even Function. A function with a graph that is symmetric with respect to the y-axis. A function is only even if and only if \(f(-x) = f(x) \).

Factor. For any number x, the numbers that can be evenly divided into x are called factors of x. For example, the number 20 has the factors 1, 2, 4, 5, 10, and 20.

Geometric Sequence. A sequence of numbers in which the ratio between any two consecutive terms is the same. In other words, you multiply by the same number each time to get the next term in the sequence. This fixed number is called the common ratio for the sequence.
• **Interval Notation.** A notation representing an interval as a pair of numbers. The numbers are the endpoints of the interval. Parentheses and/or brackets are used to show whether the endpoints are excluded or included.

• **Linear Function.** A function with a constant rate of change and a straight line graph.

• **Linear Model.** A linear function representing real-world phenomena. The model also represents patterns found in graphs and/or data.

• **Odd Function.** A function with a graph that is symmetric with respect to the origin. A function is odd if and only if \(f(-x) = -f(x) \).

• **Parameter.** The independent variable or variables in a system of equations with more than one dependent variable.

• **Range.** The set of all possible outputs of a function.

• **Recursive Formula.** A formula that requires the computation of all previous terms to find the value of \(a_n \).

• **Slope.** The ratio of the vertical and horizontal changes between two points on a surface or a line.

• **Term.** A value in a sequence— the first value in a sequence is the 1st term, the second value is the 2nd term, and so on; a term is also any of the monomials that make up a polynomial.

• **Vertical Translation.** A shift in which a plane figure moves vertically.

• **X-intercept.** The point where a line meets or crosses the x-axis

• **Y-intercept.** The point where a line meets or crosses the y-axis

EVIDENCE OF LEARNING

By the conclusion of this unit, students should be able to demonstrate the following competencies:

• Explain what it means when two curves \(\{ y = f(x) \text{ and } y = g(x) \} \) intersect.

• Define and use function notation, evaluate functions at any point in the domain, give general statements about how \(f(x) \) behaves at different regions in the domain (as \(x \) gets very large or very negative, close to 0 etc.), and interpret statements that use function notation.
• Explain the difference and relationship between domain and range and find the domain and range of a function from a function equation, table or graph.

• Examine data (from a table, graph, or set of points) and determine if the data is a function and explain any conclusions that can be drawn.

• Write a function from a sequence or a sequence from a function.

• Explain how an arithmetic or geometric sequence is related to its algebraic function notation.

• Interpret \(x\) and \(y\) intercepts, where the function is increasing or decreasing, where it is positive or negative, its end behaviors, given the graph, table or algebraic representation of a linear or exponential function in terms of the context of the function.

• Find and/or interpret appropriate domains and ranges for authentic linear or exponential functions.

• Calculate and interpret the average rate of change over a given interval of a function from a function equation, graph or table, and explain what that means in terms of the context of the function.

• Estimate the rate of change of a function from its graph at any point in its domain.

• Explain the relationship between the domain of a function and its graph in general and/or to the context of the function.

• Accurately graph a linear function by hand by identifying key features of the function such as the \(x\)- and \(y\)-intercepts and slope.

• Graph a linear or exponential function using technology.

• Sketch the graph of an exponential function accurately identifying \(x\)- and \(y\)-intercepts and asymptotes.
• Describe the end behavior of an exponential function (what happens as \(x \) goes to positive or negative infinity).

• Discuss and compare two different functions (linear and/or exponential) represented in different ways (tables, graphs or equations). Discussion and comparisons should include: identifying differences in rates of change, intercepts, and/or where each function is greater or less than the other.

• Write a function that describes a linear or exponential relationship between two quantities and combine different functions using addition, subtraction, multiplication, division and composition of functions to create a new function.

• Write recursively and an explicit formula for arithmetic and geometric sequences.

• Construct and compare linear and exponential models and solve problems.
 Recognize situations with a constant rate of change as well as those in which a quantity either grows or decays by a constant percent rate.

TEACHER RESOURCES

The following pages include teacher resources that teachers may wish to use to supplement instruction.

- **Web Resources**
 - Compare / Contrast: Linear and Exponential Functions
 - Graphic Organizer: Graphing Transformations

Web Resources

The following list is provided as a sample of available resources and is for informational purposes only. It is your responsibility to investigate them to determine their value and appropriateness for your district. GaDOE does not endorse or recommend the purchase of or use of any particular resource.

- **Rate of Change Task**
 This task includes an extensive lesson plan with alignment to the standards

- **Linear & Exponential Growth**
 This webpage includes short videos comparing linear and exponential functions.
- **Distinguishing between Linear & Exponential**

 Further video resources for exponential & linear functions.

 This website provides many visual patterns/sequences for the purpose of helping students develop algebraic thinking through visual patterns.
Compare / Contrast: Linear and Exponential Functions

Show similarities and differences between linear and exponent functions:
What things are being compared? How are they similar? How are they different?

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Linear functions</th>
<th>Exponential functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain & Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercepts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymptotes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End Behavior</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example Functions to Graph and Discuss:

\[f(x) = 2x + 3 \quad f(x) = 2^x + 3 \]
FORMATIVE ASSESSMENT LESSONS (FAL)

Formative Assessment Lessons are intended to support teachers in formative assessment. They reveal and develop students’ understanding of key mathematical ideas and applications. These lessons enable teachers and students to monitor in more detail their progress towards the targets of the standards. They assess students’ understanding of important concepts and problem solving performance, and help teachers and their students to work effectively together to move each student’s mathematical reasoning forward.

More information on Formative Assessment Lessons may be found in the Comprehensive Course Overview.

SPOTLIGHT TASKS

A Spotlight Task has been added to each CCGPS mathematics unit in the Georgia resources for middle and high school. The Spotlight Tasks serve as exemplars for the use of the Standards for Mathematical Practice, appropriate unit-level Georgia Standards of Excellence, and research-based pedagogical strategies for instruction and engagement. Each task includes teacher commentary and support for classroom implementation. Some of the Spotlight Tasks are revisions of existing Georgia tasks and some are newly created. Additionally, some of the Spotlight Tasks are 3-Act Tasks based on 3-Act Problems from Dan Meyer and Problem-Based Learning from Robert Kaplinsky.

3-ACT TASKS

A Three-Act Task is a whole group mathematics task consisting of 3 distinct parts: an engaging and perplexing Act One, an information and solution seeking Act Two, and a solution discussion and solution revealing Act Three.

More information along with guidelines for 3-Act Tasks may be found in the Comprehensive Course Overview.
TASKS

The following tasks represent the level of depth, rigor, and complexity expected of all Coordinate Algebra students. These tasks, or tasks of similar depth and rigor, should be used to demonstrate evidence of learning. It is important that all elements of a task be addressed throughout the learning process so that students understand what is expected of them. While some tasks are identified as a performance task, they may also be used for teaching and learning (learning/scaffolding task).

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Task Type</th>
<th>Content Addressed</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talk is Cheap!</td>
<td>Scaffolding Task</td>
<td>• Graph linear functions</td>
<td>• A.REI.10</td>
</tr>
<tr>
<td>(Spotlight Task) 45 min</td>
<td>Individual/Partner</td>
<td>• Use the graphing calculator to find the intersection of two linear functions</td>
<td>• A.REI.11</td>
</tr>
<tr>
<td>This task has been revised as a</td>
<td></td>
<td>• Interpret the intersection in terms of the problem situation</td>
<td>• F.IF.2</td>
</tr>
<tr>
<td>Functioning Well</td>
<td>Practice Task</td>
<td>• Compare functions represented algebraically, graphically, and in tables</td>
<td>• F.IF.7</td>
</tr>
<tr>
<td>30 min</td>
<td>Individual/Partner</td>
<td></td>
<td>• F.IF.9</td>
</tr>
<tr>
<td>Skeleton Tower</td>
<td>Short Cycle Task</td>
<td>• Find, extend and describe mathematical patterns</td>
<td>• F.BF.1a</td>
</tr>
<tr>
<td>20-30 minutes</td>
<td>Partner / Small</td>
<td></td>
<td>• F.BF.2</td>
</tr>
<tr>
<td>Detention Hall Buy Out</td>
<td>Constructive Task</td>
<td>• Model and solve problems involving the intersection of two straight lines.</td>
<td>• A.REI.10</td>
</tr>
<tr>
<td>(Spotlight Task) 60 minutes</td>
<td>Small Group</td>
<td>• Interpret the intersection in terms of the problem situation</td>
<td>• A.REI.11</td>
</tr>
<tr>
<td>Comparing Investments</td>
<td>Formative Assessment Lesson</td>
<td>• Translate between descriptive, algebraic, and tabular data, and graphical representation of a function.</td>
<td>• F.IF.1a, b, c</td>
</tr>
<tr>
<td>(FAL) ≈ 2 hours</td>
<td>Partner / Small</td>
<td>• Recognizing how, and why, a quantity changes per unit interval.</td>
<td>• F.IF.2</td>
</tr>
<tr>
<td>Comparing Investments</td>
<td></td>
<td></td>
<td>• F.IF.3</td>
</tr>
<tr>
<td>(FAL) ≈ 2 hours</td>
<td></td>
<td></td>
<td>• F.IF.5</td>
</tr>
<tr>
<td>Task Name</td>
<td>Suggested Time</td>
<td>Task Type</td>
<td>Grouping Strategy</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Best Buy Tickets</td>
<td>20-30 minutes</td>
<td>Short Cycle Task</td>
<td>Partner / Small Group</td>
</tr>
<tr>
<td></td>
<td>PDF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiplying Cells</td>
<td>30-45 minutes</td>
<td>Short Cycle Task</td>
<td>Partner / Small Group</td>
</tr>
<tr>
<td></td>
<td>PDF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>You’re Toast, Dude!</td>
<td>30-45 minutes</td>
<td>Scaffolding Task</td>
<td>Partner/Small Group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community Service, Sequences, and Functions</td>
<td>90 minutes</td>
<td>Performance Task</td>
<td>Individual or Partner</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Having Kittens (FAL)</td>
<td>≈ 2 hours</td>
<td>Formative Assessment Lesson</td>
<td>Partner / Small Group</td>
</tr>
<tr>
<td></td>
<td>PDF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task Name</td>
<td>Suggested Time</td>
<td>Task Type</td>
<td>Grouping Strategy</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Interpreting Functions</td>
<td>20-30 minutes</td>
<td>Short Cycle Task</td>
<td>Partner / Small Group</td>
</tr>
<tr>
<td>Birthday Gifts and Turtle Problem (FAL)</td>
<td></td>
<td>Formative Assessment</td>
<td>Individual / Small Group</td>
</tr>
<tr>
<td>Exploring Paths</td>
<td></td>
<td>Formative Assessment</td>
<td>Individual / Small Group</td>
</tr>
</tbody>
</table>
| High Functioning! | 90-120 minutes | Practice Task | Individual | • Find the value of k given the graphs
• Identify even and odd function
• Relate vertical translations of a linear function to its y-intercept | F.BF.3 |
| Summing it up: Putting the “Fun” in Functions| 3-4 days | Culminating Task | Individual/Partner | • Understand the concept of a function and use function notation
• Interpret functions that arise in context
• Analyze functions using different representations
• Building new functions from existing functions
• Construct and compare linear and exponential models and solve problems | All |
Talk Is Cheap! (Spotlight Task)

The original Talk is Cheap task was featured in the CCGPS Coordinate Algebra Unit 3 Frameworks. This Spotlight version is designed to open the task to multiple levels of learners by allowing students to formulate their own questions based on a given bit of information. This task will allow easy access and high scalability for differentiation.

Introduction

This task can be used to introduce students to functions in a realistic setting—choosing a cell phone plan given certain conditions. Students gain experience working with decimals and translating among different representations of linear functions. They use the graphing calculator to find the intersection of two linear functions graphically and interpret the intersection in terms of the problem situation.

Essential Questions

- Why is the concept of a function important?
- How do I use function notation to show a variety of situations modeled by functions?
- How do I interpret expressions for functions in terms of the situation they model?

Georgia Standards of Excellence

MGSE9-12.A.REI.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane. (Focus on linear and exponential equations and be able to adapt and apply that learning to other types of equations in future courses.)

MGSE9-12.A.REI.11 Using graphs, tables, or successive approximations, show that the solution to the equations $f(x) = g(x)$ is the x-value where the y-values of $f(x)$ and $g(x)$ are the same. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

MGSE9-12.F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. (Draw examples from linear and exponential functions.)

MGSE9-12.F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology. (Focus on linear and exponential functions. Include comparisons of two functions presented algebraically.)

MGSE9-12.F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). (Focus on linear and exponential functions. Include comparisons of two functions presented algebraically.)
MGSE9-12.F.BF.1 Write a function that describes a relationship between two quantities. *(Limit to linear and exponential functions.)*

Standards for Mathematical Practice
1. Make sense of problems and persevere in solving them. Students will have to make multiple tables and graphs to demonstrate the relationship. Students must make sense of the problem by identifying what information they need to solve it.

2. Reason abstractly and quantitatively. Students were asked to make an estimate (high and low).

3. Construct viable arguments and critique the reasoning of others. After writing down their own question, students discussed their question with tablemates, creating the opportunity to construct the argument of why they chose their question, as well as critiquing the questions that others came up with.

4. Model with mathematics. Students will create linear functions representing payment plans for cell phones.

5. Use appropriate tools strategically. Students may find points of intersection using graphing calculators.

MATERIALS REQUIRED Graph paper and/or graphing calculator

TIME NEEDED 30 minutes to one hour depending on the depth of questioning

TEACHER NOTES
In this task, students will read the brief amount of information provided, and then discuss what they noticed. They will then be asked to formulate questions about what they wonder or are curious about. These questions will be recorded on the board and on student recording sheet. Students will then use mathematics to answer their own questions. More information along with guidelines for 3-Act Tasks may be found in the Comprehensive Course Guide.

Act 1: The Information:

- Talk Fast cellular phone service charges $0.10 for each minute the phone is used.
- Talk Easy cellular phone service charges a basic monthly fee of $18.00 plus $0.04 for each minute the phone is used.
- Both plans charge $5.00 per month for unlimited texting service.
NOTE: Students might ask if the $5.00 per month charge for unlimited texting is included in the Talk Easy cellular basic monthly fee of $18.00. This question opens the door for more mathematical discussion: What difference will that (including the $5.00) make on lining up the prices? For the purposes of the solution listed at the end of this task, the $5.00 fee was in addition to the $18.00 fee.

Act 2: The Investigation:

During Act 2 Students will come up with questions that interest them relative to the two cell phone carriers. They will then use various methods of solving systems of linear equations to answer the questions they posed. Recall in 8th grade an in Unit 2 of CCGPS Coordinate Algebra students used graphing, substitution, and linear combination (elimination) methods to solve systems of linear equations. Students should be encouraged to develop the function notation for each of the cellular carriers (MGSE9-12.F.IF.2) and follow with the graphing of these functions (MGSE9-12.F.IF.7). This task lends well to discussion of parameters or feasible solutions and to compare the properties of two functions (MGSE9-12.F.IF.9) in a “real world” setting. Such questions as: “Does it make sense to consider values below zero for the number of minutes? And “How much would you (the student) think is “reasonable” to spend on a cell phone plan for a month?” should be part of small group or class discussions as deemed appropriate.

Act 3: The Reveal:

During Act 3 Students will discuss, present, or defend their solutions to the problem(s) they investigated in Act 2.

Note: The solution will depend on the question asked by the student. If they decided to find out when the plans cost the same, they would find that for 300 minutes each plan will cost $35.00. Prior to 300 minutes of talk, the plan with $0.10 per minute charge (Talk Fast) will be cheaper but after the 300 minute mark, the plan for $0.04 per minute (Talk Easy) will be the better buy.

A template for working through the task is presented on the next page.
Task Title: __________________________ Name: __________________________

ACT 1

What did/do you notice?

<table>
<thead>
<tr>
<th></th>
<th>Your estimate</th>
<th>Estimate (too low)</th>
<th>Estimate (too high)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What questions come to your mind?

Main Question: __

ACT 2

What information would you like to know or do you need to solve the MAIN question?

<table>
<thead>
<tr>
<th></th>
<th>Your estimate</th>
<th>Estimate (too low)</th>
<th>Estimate (too high)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Andrew Stadel
Record the given information (measurements, materials, etc…)

If possible, give a better estimate using this information:_______________________________

Act 2 (con’t)
Use this area for your work, tables, calculations, sketches, and final solution.

ACT 3

<table>
<thead>
<tr>
<th>What was the result?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Which Standards for Mathematical Practice did you use?</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Make sense of problems & persevere in solving them</td>
</tr>
<tr>
<td>□ Reason abstractly & quantitatively</td>
</tr>
<tr>
<td>□ Construct viable arguments & critique the reasoning of others.</td>
</tr>
<tr>
<td>□ Model with mathematics.</td>
</tr>
</tbody>
</table>
Functioning Well! (Practice Task)

Introduction
This task is designed to allow students to practice working with functions prior to completing rigorous integrated tasks that require them to interpret, analyze, build, construct, and compare linear and exponential functions to solve problems and model real-world situations.

Mathematical Goals
• Understand the domain and range, notation, and graph of a function
• Use function notation
• Interpret statements that use function notation in terms of context
• Recognize that sequences are functions

Essential Questions
• How do I represent real life situations using function notation?

Georgia Standards of Excellence
MGSE9-12.F.IF.1 Understand that a function from one set (the input, called the domain) to another set (the output, called the range) assigns to each element of the domain exactly one element of the range. If \(f \) is a function, \(x \) is the input (an element of the domain), then \(f(x) \) is the output (an element of the range). Graphically, the graph is \(y = f(x) \). (Draw examples from linear and exponential functions.)

MGSE9-12.F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. (Draw examples from linear and exponential functions.)

Standards for Mathematical Practice
2. Reason abstractly and quantitatively.
 Students must describe real life situations using function notation.
3. Construct viable arguments and critique the reasoning of others.
 Students must defend why different representations of relations are functions.

Background Knowledge
• Students understand the difference between a relation and a function.
• Students can read and interpret graphs.
• Students can use function notation to relate inputs and outputs.

Common Misconceptions
• Students may confuse inputs and outputs. Students need to know how a function in defined in terms of inputs and outputs.
• Students may not see the distinction between adding a constant to the input or to the output of a function. They may not understand how that changes the application in real-life situations.

Materials
• None

Grouping
• Partner / Individual

Differentiation

Extension:
• Create your own situations showing relations that are or are NOT functions. Show a verbal, graphical and numeric example.

Intervention:
• Use strategic grouping.
• Provide manipulatives.

Formative Assessment Questions
• What is a function and what are the different ways it can be expressed?
• How are arithmetic operations of functions similar/different to operations on real numbers?
Functioning Well – Teacher Notes

Consider the definition of a function (A function is a rule that assigns each element of set A to a unique element of set B. It may be represented as a set of ordered pairs such that no two ordered pairs have the same first member, i.e. each element of a set of inputs (the domain) is associated with a unique element of another set of outputs (the range)).

Part I – Function or Not

Determine whether or not each of the following is a function or not. Write “function” or “not a function” and explain why or why not.

Comment:
Make sure students explain their reasoning.

<table>
<thead>
<tr>
<th>Relation</th>
<th>Answer and Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Domain (x)</td>
<td>Function. By following each arrow from an x (domain) to each y (range), you can see this is a function. Each x has only one y it connects to, which by definition is a function.</td>
</tr>
<tr>
<td>Range (y)</td>
<td></td>
</tr>
<tr>
<td>{-3, -2, -1, 0, 1}</td>
<td></td>
</tr>
<tr>
<td>{-10, -4, -1, 0, 5}</td>
<td></td>
</tr>
<tr>
<td>2. f(x)</td>
<td>Not a function. This graph fails the vertical line test. Also, some of the x’s (2, 3, 4) are connected to more than one y each. The graph demonstrates one input is generating more than one output.</td>
</tr>
<tr>
<td>x</td>
<td></td>
</tr>
<tr>
<td>{-4, -2, 2, 4}</td>
<td></td>
</tr>
<tr>
<td>{-2, 2}</td>
<td></td>
</tr>
<tr>
<td>3. Domain (x)</td>
<td>Not a function. An input of -1 sometimes gives an output of -1 and other times gives an output of 5. Therefore, there is no consistent rule and cannot be a function.</td>
</tr>
<tr>
<td>Range (y)</td>
<td></td>
</tr>
<tr>
<td>{-1, 0, 5, 8, 12}</td>
<td></td>
</tr>
<tr>
<td>4. (x, y) = (student’s name, student’s shirt color)</td>
<td>Function. Students may explain that each name is paired with a unique shirt color.</td>
</tr>
</tbody>
</table>

Part II – Function Notation
Suppose a restaurant has to figure the number of pounds of fresh fish to buy given the number of customers expected for the day. Let \(p = f(E) \) where \(p \) is the pounds of fish needed and \(E \) is the expected number of customers.

5. What would the expressions \(f(E + 15) \) and \(f(E) + 15 \) mean?

Solution:
These two expressions are similar in that they both involve adding 15. However, for \(f(E + 15) \), the 15 is added on the inside, so 15 is added to the number of customers expected. Therefore, \(f(E + 15) \) gives the number of pounds of fish needed for 15 extra customers. The expression \(f(E) + 15 \) represents an outside change. We are adding 15 to \(f(E) \), which represents pounds of fish, not expected number of customers. Therefore, \(f(E) + 15 \) means that we have 15 more pounds of fish than we need for \(E \) expected customers.

6. The restaurant figured out how many pounds of fish needed and bought 2 extra pounds just in case. Use function notation to show the relationship between domain and range in this context.

Solution:
\(p = f(E) + 2 \)

7. On the day before a holiday when the fish markets are closed, the restaurant bought enough fish for two nights. Using function notation, illustrate how the relationship changed.

Solution:
\(p = 2f(E) \)

8. The owner of the restaurant planned to host his 2 fish-loving parents for dinner at the restaurant. Illustrate using function notation

Solution:
\(p = f(E + 2) \)

Part III – Graphs are Functions
Write each of the points using function notation.

9. \[f(n) = 2n \]

Solution
\(f(1) = 1; \ f(2) = 2; \ f(3) = 3; \ f(4) = 4; \ f(5) = 5 \)

10. \[f(n) = 3^n \]

Solution
\(f(1) = 3; \ f(2) = 9; \ f(3) = 27; \ f(4) = 81; \ f(5) = 243 \)

Practice Task: Functioning Well

Name_________________________________ Date__________________

Mathematical Goals
• Understand the domain and range, notation, and graph of a function
• Use function notation
• Interpret statements that use function notation in terms of context
• Recognize that sequences are functions

Essential Questions
• How do I represent real life situations using function notation?

Georgia Standards of Excellence
MGSE9-12.F.IF.1 Understand that a function from one set (the input, called the domain) to another set (the output, called the range) assigns to each element of the domain exactly one element of the range. If \(f \) is a function, \(x \) is the input (an element of the domain), then \(f(x) \) is the output (an element of the range). Graphically, the graph is \(y = f(x) \). *(Draw examples from linear and exponential functions.)*

MGSE9-12.F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. *(Draw examples from linear and exponential functions.)*

Standards for Mathematical Practice
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
Practice Task: Functioning Well

Name_____________________________ Date__________________

Consider the definition of a function (A function is a rule that assigns each element of set A to a unique element of set B. It may be represented as a set of ordered pairs such that no two ordered pairs have the same first member, i.e. each element of a set of inputs (the domain) is associated with a unique element of another set of outputs (the range)).

Part I – Function or Not
Determine whether or not each of the following is a function or not. Write “function” or “not a function” and explain why or why not.

Relation	Answer and Explanation
1. |
2. |
3. |
4. | (x, y) = (student’s name, student’s shirt color)
Part II – Function Notation
Suppose a restaurant has to figure the number of pounds of fresh fish to buy given the number of customers expected for the day. Let \(p = f(E) \) where \(p \) is the pounds of fish needed and \(E \) is the expected number of customers.

5. What would the expressions \(f(E + 15) \) and \(f(E) + 15 \) mean?

6. The restaurant figured out how many pounds of fish needed and bought 2 extra pounds just in case. Use function notation to show the relationship between domain and range in this context.

7. On the day before a holiday when the fish markets are closed, the restaurant bought enough fish for two nights. Using function notation, illustrate how the relationship changed.

8. The owner of the restaurant planned to host his 2 fish-loving parents in addition to his expected customers for dinner at the restaurant. Illustrate using function notation

Part III – Graphs are Functions
Write each of the points using function notation.

9. \[f(n) = 2n \]

10. \[f(n) = 3^n \]
Skeleton Tower (Short Cycle Task)

Source: Formative Assessment Lesson Materials from Mathematics Assessment Project

Task Comments and Introduction
Tasks and lessons from the Mathematics Assessment Project are specifically designed to help teachers effectively formatively assess their students. The way the tasks and lessons are designed gives the teacher a clear understanding of what the students are able to do and not do. Within the lesson, teachers will find suggestions and question prompts that will help guide students towards understanding. For more information access the MAP website:
http://www.map.mathshell.org/materials/background.php?subpage=summative

The task, Skeleton Tower, is a Mathematics Assessment Project Assessment Task that can be found at the website:

The PDF version of the task can be found at the link below:

The scoring rubric can be found at the following link:

Mathematical Goals
• Find, extend, and describe mathematical patterns.

Essential Questions
• How do I find, extend, and describe mathematical patterns?

Georgia Standards of Excellence
MGSE9-12.F.BF.1 Write a function that describes a relationship between two quantities. (Limit to linear and exponential functions.)

MGSE9-12.F.BF.1a Determine an explicit expression and the recursive process (or steps for calculation) from a context. For example, if Jimmy starts out with $15 and earns $2 a day, the explicit expression “2x + 15” can be described recursively (either in writing or verbally) as “to find out how much money Jimmy will have tomorrow, you add $2 to his total today.” \(J_n = J_{n-1} + 2, J_0 = 15. \) (Limit to linear and exponential functions.)

MGSE9-12.F.BF.2 Write arithmetic and geometric sequences recursively and explicitly, use them to model situations, and translate between the two forms. Connect arithmetic sequences to linear functions and geometric sequences to exponential functions.
Standards for Mathematical Practice
2. Reason abstractly and quantitatively.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Background Knowledge
• Students can represent sequences algebraically.

Common Misconceptions
• Students may confuse geometric and arithmetic sequences.
• Students may think about sequences recursively but incorrectly write their pattern as explicit formulas.

Materials
• see FAL website

Grouping
• Individual / small group
The Detention Buy-Out (Spotlight Task)

“Detention Hall Buy Out” originally accessed at http://tapintoteenminds.com/real-world-math/exploring-linear-relationships-and-patterning/ involves setting up and solving a linear system in an engaging context. This task includes video support along with a handout for students support.

Estimated Task Time: One Hour

Georgia Standards of Excellence
MGSE9-12.A.REI.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane. (Focus on linear and exponential equations and be able to adapt and apply that learning to other types of equations in future courses.)

MGSE9-12.A.REI.11 Using graphs, tables, or successive approximations, show that the solution to the equations \(f(x) = g(x) \) is the \(x \)-value where the \(y \)-values of \(f(x) \) and \(g(x) \) are the same. Include cases where \(f(x) \) and/or \(g(x) \) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

MGSE9-12.F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

MGSE9-12.F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology.

MGSE9-12.F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

MGSE9-12.F.BF.1 Write a function that describes a relationship between two quantities.

Standards for Mathematical Practice
1. Make sense of problems and persevere in solving them: analyze a real-world situation and make a connection to prior knowledge.
4. Model with mathematics: deconstruct the problem and use prior knowledge to create a solution to the problem.
5. Use appropriate tools strategically: show adequate steps to clearly demonstrate understanding using a variety of methods.

The Task is listed below and has been adapted from http://tapintoteenminds.com/real-world-math/exploring-linear-relationships-and-patterning/.
Part 1: Students will watch a video called The Detention Buy-Out. In the video, three administrators from Tecumseh Vista Academy K-12 School are interviewed and propose individual options for students to avoid serving detentions by paying the administrators according to their buy-out offers.

Part 2: After watching the video Students will then be split into groups of 2 or 3, to determine which administrator should each student buy-out from.

Encourage students to show their solution in any way they would like or you can assign certain methods to particular groups.

The exploring linear relationships problem can be solved in a number of ways which increase the scalability of this task and provide opportunities for multiple methods including:

- Trial and error / guess and check
- Table of values
- Graphing to find point of intersection
- Creating equations and substitute different values of x
- Solving a system of equations using elimination
- Solving the system of equations using substitution

Part 3: Students should report the results of their exploration with supporting evidence from their method of solving the problem.
Advertisement Picture for Detention Hall Buy Out

Who Should They Buy-Out From?
Mrs. Bondy-Corneille | Mrs. Rankin | Mr. Bisson

Link to actual PDF
Comparing Investments (Formative Assessment Lesson)

Source: Formative Assessment Lesson Materials from Mathematics Assessment Project
http://map.mathshell.org/materials/download.php?fileid=1250

Task Comments and Introduction
Tasks and lessons from the Mathematics Assessment Project are specifically designed to help teachers effectively formatively assess their students. The way the tasks and lessons are designed gives the teacher a clear understanding of what the students are able to do and not do. Within the lesson, teachers will find suggestions and question prompts that will help guide students towards understanding. For more information access the MAP website:
http://www.map.mathshell.org/materials/background.php?subpage=formative

The task, Comparing Investments, is a Formative Assessment Lesson (FAL) that can be found at the website: http://map.mathshell.org/materials/lessons.php?taskid=426&subpage=concept

The FAL document provides a clear lesson design, from the opening of the lesson to the closing of the lesson.

The PDF version of the task can be found at the link below:
http://map.mathshell.org/materials/download.php?fileid=1250

Mathematical Goals
• Translate between descriptive, algebraic, and tabular data, and graphical representation of a function.
• Recognize how, and why, a quantity changes per unit interval.

Essential Questions
• How do you relate real-life problems to linear or exponential models?

Georgia Standards of Excellence
MGSE9-12.F.LE.1 Distinguish between situations that can be modeled with linear functions and with exponential functions.

MGSE9-12.F.LE.1a Show that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals. (This can be shown by algebraic proof, with a table showing differences, or by calculating average rates of change over equal intervals.)

MGSE9-12.F.LE.1b Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
MGSE9-12.F.LE.1c Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

MGSE9-12.F.LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

MGSE9-12.F.LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

MGSE9-12.F.LE.5 Interpret the parameters in a linear $f(x) = mx + b$ or exponential $f(x) = a \cdot d^x$ function in terms of a context. (In the functions above, “m” and “b” are the parameters of the linear function, and “a” and “d” are the parameters of the exponential function.) In context, students should describe what these parameters mean in terms of change and starting value.

Standards for Mathematical Practice
1. Make sense of problems and persevere in solving them
2. Reason abstractly and quantitatively.
4. Model with mathematics.
7. Look for and make use of structure.

Background Knowledge
• Students can compute simple and compound interest.
• Students understand linear and exponential models.

Common Misconceptions
• Students may confuse the formulas and meanings of simple and compound interest.

Essential Questions
• How can I use linear models to decide which of the two payment models is cheaper?

Materials
• see FAL website

Grouping
• Individual / partners
Best Buy Tickets (Short Cycle Task)

Source: Formative Assessment Lesson Materials from Mathematics Assessment Project
http://www.map.mathshell.org/materials/download.php?fileid=824

Task Comments and Introduction
Tasks and lessons from the Mathematics Assessment Project are specifically designed to help teachers effectively formatively assess their students. The way the tasks and lessons are designed gives the teacher a clear understanding of what the students are able to do and not do. Within the lesson, teachers will find suggestions and question prompts that will help guide students towards understanding. For more information access the MAP website:
http://www.map.mathshell.org/materials/background.php?subpage=summative

The task, Best Buy Tickets, is a Mathematics Assessment Project Assessment Task that can be found at the website:

The PDF version of the task can be found at the link below:
http://www.map.mathshell.org/materials/download.php?fileid=824

The scoring rubric can be found at the following link:

Mathematical Goals
• Students can use linear models to compare two purchasing options.

Essential Questions
• How can I use linear models to decide which of the two payment models is cheaper?

Georgia Standards of Excellence
MGSE9-12.F.BF.1 Write a function that describes a relationship between two quantities. (Limit to linear and exponential functions.)

MGSE9-12.F.BF.1a Determine an explicit expression and the recursive process (or steps for calculation) from a context. For example, if Jimmy starts out with $15 and earns $2 a day, the explicit expression “2x + 15” can be described recursively (either in writing or verbally) as “to find out how much money Jimmy will have tomorrow, you add $2 to his total today.” \[J_n = J_{n-1} + 2, J_0 = 15. \] (Limit to linear and exponential functions.)

MGSE9-12.F.BF.2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. Connect arithmetic sequences to linear functions and geometric sequences to exponential functions.
Standards for Mathematical Practice
1. Make sense of problems and persevere in solving them
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.

Background Knowledge
• Students understand the meaning of slope and y-intercept in context when writing linear equations.
• Students may need to know how to solve a system of linear equations, depending on the solution path they follow.

Common Misconceptions
• Students may confuse the slope and the y-intercept of a linear equation.
• Students may fail to realize that the answer to the “which is the better buy” question depends on the number of people who attend.

Materials
• see FAL website

Grouping
• Individual / partners
Multiplying Cells (Short Cycle Task)

Source: Formative Assessment Lesson Materials from Mathematics Assessment Project

Task Comments and Introduction

Tasks and lessons from the Mathematics Assessment Project are specifically designed to help teachers effectively formatively assess their students. The way the tasks and lessons are designed gives the teacher a clear understanding of what the students are able to do and not do. Within the lesson, teachers will find suggestions and question prompts that will help guide students towards understanding. For more information access the MAP website:
http://www.map.mathshell.org/materials/background.php?subpage=summative

The task, Multiplying Cells, is a Mathematics Assessment Project Assessment Task that can be found at the website:

The PDF version of the task can be found at the link below:

The scoring rubric can be found at the following link:

Mathematical Goals

- Use exponential functions to model real-world situations.

Essential Questions

- How can I use exponential functions to model real-world situations?

Georgia Standards of Excellence

MGSE9-12.F.BF.1 Write a function that describes a relationship between two quantities. (Limit to linear and exponential functions.)

MGSE9-12.F.BF.1a Determine an explicit expression and the recursive process (or steps for calculation) from a context. For example, if Jimmy starts out with $15 and earns $2 a day, the explicit expression “2x + 15” can be described recursively (either in writing or verbally) as “to find out how much money Jimmy will have tomorrow, you add $2 to his total today.” J_n = J_{n-1} + 2, J_0 = 15. (Limit to linear and exponential functions.)

MGSE9-12.F.BF.2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. Connect arithmetic sequences to linear functions and geometric sequences to exponential functions.

MGSE9-12.F.LE.1 Distinguish between situations that can be modeled with linear functions and with exponential functions.
MGSE9-12.F.LE.1a Show that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals. (This can be shown by algebraic proof, with a table showing differences, or by calculating average rates of change over equal intervals.)

MGSE9-12.F.LE.1b Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

MGSE9-12.F.LE.1c Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

MGSE9-12.F.LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

MGSE9-12.F.LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

MGSE9-12.F.LE.5 Interpret the parameters in a linear \(f(x) = mx + b \) or exponential \(f(x) = a \cdot d^x \) function in terms of a context. (In the functions above, “\(m \)” and “\(b \)” are the parameters of the linear function, and “\(a \)” and “\(d \)” are the parameters of the exponential function.) In context, students should describe what these parameters mean in terms of change and starting value.

Standards for Mathematical Practice
3. Construct viable arguments and critique the reasoning of others.
7. Look for and make use of structure.

Background Knowledge
- Students can work with exponents.
- Students recognize exponential relationships.

Common Misconceptions
- Students may think about sequences recursively but incorrectly write their pattern as explicit formulas.
- Students may interpret \(2^3 \) as \(2 \cdot 3 \), or they may believe the growth is linear.

Materials
- see FAL website

Grouping
- Individual / partner
You’re Toast, Dude! (Scaffolding Task)

Introduction
Students extend their understanding of functions. Students will gain experience in moving between a problem context and its mathematical model in order to solve problems and make decisions.

Mathematical Goals
• Use function notation
• Interpret functions that arise in applications in terms of context
• Analyze functions using different representations
• Build a function that models a relationship between two quantities

Essential Questions
• How do I interpret functions that arise in applications in terms of context?

Georgia Standards of Excellence
MGSE9-12.A.REI.11 Using graphs, tables, or successive approximations, show that the solution to the equations $f(x) = g(x)$ is the x-value where the y-values of $f(x)$ and $g(x)$ are the same. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

MGSE9-12.F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. (Draw examples from linear and exponential functions.)

MGSE9-12.F.IF.4 Using tables, graphs, and verbal descriptions, interpret key characteristics of a function which models the relationship between two quantities. Sketch a graph showing key features including: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. (Focus on linear and exponential functions.)

MGSE9-12.F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology. (Focus on linear and exponential functions. Include comparisons of two functions presented algebraically.)

MGSE9-12.F.BF.1 Write a function that describes a relationship between two quantities. (Limit to linear and exponential functions.)
Standards for Mathematical Practice
2. Reason abstractly and quantitatively.
4. Model with mathematics.
 Students will express real life situations about toaster cost and production algebraically.
5. Use appropriate tools strategically.
 Students will be aided by graphing calculators.

Background Knowledge
- understanding slope and y-intercept in building a linear function
- using function notation to answer contextual problems
- basic graphing calculator skills (if available)

Common Misconceptions
- For #5, students may neglect dividing the whole expression by x.
- Students may have difficulty finding the correct parameters for their graphing calculator window.

Materials
- Graphing Calculator (optional)

Grouping
- Partner / Individual

Differentiation
 Extension:
 - See teacher comments for #6c.
 Intervention:
 - Demonstrate graph for #6 as a whole group.

Formative Assessment Questions
- How can we use function notation to describe real-life situations?
- How can we use operations on functions to solve problems?
You’re Toast, Dude! – Teacher Notes

Comment
#6 asks students to graph a rational function. If graphing calculators are not available, teachers can demonstrate the graph to number 6 as a whole group. For students with stronger graphing skills, they make a table and look for the pattern as number of toasters increases.

At the You’re Toast, Dude! toaster company, the weekly cost to run the factory is $1400 and the cost of producing each toaster is an additional $4 per toaster.

1. Write a function rule representing the weekly cost in dollars, \(C(x) \), of producing \(x \) toasters.

Solution:
\[C(x) = 4x + 1400 \]

2. What is the total cost of producing 100 toasters in one week?

Solution:
\[C(100) = 4(100) + 1400 = 1800. \text{ It will cost } \$1800 \text{ to produce 100 toasters in one week.} \]

3. If you produce 100 toasters in one week, what is the total production cost per toaster?

Solution:
\[1800 / 100 = 18. \text{ If 100 toasters are produced the total production cost per toaster is } \$18. \]

4. Will the total production cost per toaster always be the same? Justify your answer.

Solution:
No. Justifications may vary. If 200 toasters are produced in one week, the cost is \(C(200) = 4(200) + 1400 = 2200. \text{ The total production cost is } \$2200 / 200 = \$11 \text{ per toaster. Since } \$11 \text{ does not equal } \$18, \text{ the total production cost per toaster is not the same when the number of toasters produced varies.} \]

5. Write a function rule representing the total production cost per toaster \(P(x) \) for producing \(x \) toasters.

Solution:
\[P(x) = (4x + 1400) / x \text{ or } P(x) = 4 + (1400/x) \text{ or } P(x) = C(x)/x \]
6. Using your graphing calculator, create a graph of your function rule from question 5. Use either the graph or algebraic methods to answer the following questions:

a. What is the production cost per toaster if 300 toasters are produced in one week? What if 500 toasters are produced in one week?

Solution:
If 300 toasters are produced, the total production cost per toaster is $8.67.
If 500 toasters are produced, the total production cost per toaster is $6.80.

b. What happens to the total production cost per toaster as the number of toasters produced increases? Explain your answer.

Solution:
As the number of toasters produced increases, the total production cost per toaster decreases. Looking at the graph will show that as x increases, y decreases. In addition, looking at the table of values in the graphing calculator you can see that as the x values increase, the y values decrease.

c. How many toasters must be produced to have a total production cost per toaster of $8?

Solution:
The viewing window above shows that the intersection of $y = 4 + (1400/x)$ and $y = 8$ is the point (350, 8). Therefore, when 350 toasters are produced in one week, the total production cost per toaster is $8.
Possible Extension:

Have students discuss the mathematical parameters/limitations of x, C(x), and P(x) compared to real-life limitations of the mathematical model for the particular situation. Ask students to consider what happens at extremely large or small values of x, extending the mathematical discussion to asymptotes. Ask students to find the asymptotes of the production cost per toaster. As the number of toasters, x, nears 0, the total production cost per toaster gets larger. For example, when x = 10 toasters, the total production cost per toaster is $144. When x = 5, the total production cost per toaster is $284. When x = 0 the function cannot be solved for P(x).

As the number of toasters, x, becomes larger and larger, the average cost per toaster nears $4. For example, when x = 5,000 toasters, the average cost per toaster is $4.28. When P(x) = 4 the function cannot be solved for x. The horizontal asymptote of the function is y = 4, and the vertical asymptote is x = 0.

References

Scaffolding Task: You’re Toast, Dude!

Mathematical Goals
- Use function notation
- Interpret functions that arise in applications in terms of context
- Analyze functions using different representations
- Build a function that models a relationship between two quantities

Essential Questions
- How do I interpret functions that arise in applications in terms of context?

Georgia Standards of Excellence
MGSE9-12.A.REI.11 Using graphs, tables, or successive approximations, show that the solution to the equations \(f(x) = g(x) \) is the \(x \)-value where the \(y \)-values of \(f(x) \) and \(g(x) \) are the same. Include cases where \(f(x) \) and/or \(g(x) \) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

MGSE9-12.F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. (Draw examples from linear and exponential functions.)

MGSE9-12.F.IF.4 Using tables, graphs, and verbal descriptions, interpret key characteristics of a function which models the relationship between two quantities. Sketch a graph showing key features including: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. (Focus on linear and exponential functions.)

MGSE9-12.F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology. (Focus on linear and exponential functions. Include comparisons of two functions presented algebraically.)

MGSE9-12.F.BF.1 Write a function that describes a relationship between two quantities. (Limit to linear and exponential functions.)

Standards for Mathematical Practice
2. Reason abstractly and quantitatively.
4. Model with mathematics.
5. Use appropriate tools strategically.
Scaffolding Task: You’re Toast, Dude!

Name_________________________________ Date__________________

At the You’re Toast, Dude! toaster company, the weekly cost to run the factory is $1400 and the cost of producing each toaster is an additional $4 per toaster.

1. Write a function rule representing the weekly cost in dollars, $C(x)$, of producing x toasters.

2. What is the total cost of producing 100 toasters in one week?

3. If you produce 100 toasters in one week, what is the total production cost per toaster?

4. Will the total production cost per toaster always be the same? Justify your answer.

5. Write a function rule representing the total production cost per toaster $P(x)$ for producing x toasters.
6. Using your graphing calculator, create a graph of your function rule from question 5. Use either the graph or algebraic methods to answer the following questions:

a. What is the production cost per toaster if 300 toasters are produced in one week? If 500 toasters are produced in one week?

b. What happens to the total production cost per toaster as the number of toasters produced increases? Explain your answer.

c. How many toasters must be produced to have a total production cost per toaster of $8?
Community Service, Sequences, and Functions (Performance Task)

Introduction
In this task, students will explore the relationship between arithmetic and geometric sequences and exponential functions. They will convert a recursive relationship into an explicit function.

Mathematical Goals
• Recognize that sequences are functions sometimes defined recursively
• Use technology to graph and analyze functions
• Convert a recursive relationship into an explicit function
• Construct linear and exponential function (including reading these from a table)
• Observe the difference between linear and exponential functions

Essential Questions
• How are sequences and functions related? How can I model one with the other?

Georgia Standards of Excellence
MGSE9‐12.F.IF.3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. (Generally, the scope of high school math defines this subset as the set of natural numbers 1, 2, 3, 4…) By graphing or calculating terms, students should be able to show how the recursive sequence \(a_1 = 7, a_n = a_{n-1} + 2 \); the sequence \(s_n = 2(n - 1) + 7 \); and the function \(f(x) = 2x + 5 \) (where \(x \) is a natural number) all define the same sequence. (Draw connection to F.BF.2, which requires students to write arithmetic and geometric sequences.)

MGSE9‐12.F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function \(h(n) \) gives the number of person-hours it takes to assemble \(n \) engines in a factory, then the positive integers would be an appropriate domain for the function. (Focus on linear and exponential functions.)

MGSE9‐12.F.LE.1b Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

MGSE9‐12.F.LE.1c Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

MGSE9‐12.F.LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

MGSE9‐12.F.LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.
MGSE9-12.F.BF.2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. Connect arithmetic sequences to linear functions and geometric sequences to exponential functions.

Standards for Mathematical Practice
4. Model with mathematics.
 Students will create sequences from context and model them with tables and equations.
7. Look for and make use of structure.
 Students will use tables to formulate equations.
8. Look for and express regularity in repeated reasoning.
 Students will recognize patterns within sequences.

Background Knowledge
• Students understand sequences as functions.
• Students can use and write explicit and recursive formulas for sequences.

Common Misconceptions
• Students may confuse explicit and recursive formulas and the parts that make them up.

Materials
• None

Grouping
• Partner / Individual

Differentiation
Extension:
• Have students write explicit and recursive formulas for the amount of money collected.
 #7: \[a_n = 5n; \quad a_n = a_{n-1} + 5 \]
 #8: \[a_n = 5(2)^{n-1}; \quad a_n = 2a_n \]
Intervention:
• Provide students with two rows in the table
• Give formulas for the sequences.

Formative Assessment Questions
• How are sequences related to functions?
• What types of real-life situations can be modeled with functions?
Community Service, Sequences, and Functions – Teacher Notes

Comment:
Activities that require students to practice completing geometric and arithmetic sequences and generate an explicit and recursive formula from those sequences should occur prior to completing this task.

Larry, Moe, and Curly spend their free time doing community service projects. They would like to get more people involved. They began by observing the number of people who show up to the town cleanup activities each day. The data from their observations is recorded in the given table for the Great Four Day Cleanup.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>71</td>
</tr>
</tbody>
</table>

1. Give a verbal description of what the domain and range presented in the table represents.
 Solution: The domain is the number of days. The range represents the number of people that showed up each day.

2. Sketch the data on the grid below.

3. Determine the type of function modeled in the graph above and describe key features of the graph.
 Solution: Answers may vary. The graph models a linear function. The sequence represents discrete data. Looking at the graph, the pattern appears to be increasing at a constant rate of change.

4. Based on the pattern in the data collected, what recursive process could Larry, Curly, and Moe write?
 Solution: \(a_1 = 5, \ a_n = a_{n-1} + 22\)

5. Write a linear equation to model the function.
 Solution: Students could answer in the form of the explicit formula, \(a_n = 5 + 22(n - 1)\), or in slope-intercept form \(f(x) = 22x - 17\). Students should understand the relationship between these two forms.
6. How would Larry, Curly, and Moe use the explicit formula to predict the number of people who would help if the cleanup campaign went on for 7 days?

Solution:
By evaluating \(f(x) = 22x - 17 \) (or \(a_n = 5 + (n - 1)22 \)) substituting 7 for the x value in the explicit formula, they could predict that 22(7) – 17 or 137 people will show up on day 7 if the cleanup campaign continued.

Excited about the growing number of people participating in community service, Larry, Curly, and Moe decide to have a fundraiser to plant flowers and trees in the parks that were cleaned during the Great Four Day cleanup. It will cost them $5,000 to plant the trees and flowers. They decide to sell some of the delicious pies that Moe bakes with his sisters. For every 100 pies sold, it costs Moe and his sisters $20.00 for supplies and ingredients to bake the pies. Larry, Curly, and Moe decide to sell the pies for $5.00 each.

7. Complete the following table to find the total number of pies sold and the amount of money the trio collects.

<table>
<thead>
<tr>
<th>Customer Number</th>
<th>Number of Pies Sold</th>
<th>Amount Collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>$5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>$10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>$15</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>$20</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>$25</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>$30</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>$35</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>$40</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>$45</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>$50</td>
</tr>
<tr>
<td>total</td>
<td>55</td>
<td>$275</td>
</tr>
</tbody>
</table>

Solution:
Since the number of pies sold to each customer is the same as the customer number, we have the explicit formula that \(a_n = n \), where \(a_n \) is the number of pies and \(n \) is the customer number. We can also notice that the number of pies increases by one each time so \(a_n = a_{n-1} + 1 \), where \(a_n \) is the number of pies, is the recursive formula for the number of pies sold.

Extension:
To obtain the explicit formula for the amount collected, we can multiply the number of pies sold by 5. This gives us \(a_n = 5n \), where \(a_n \) is the cost of the pies sold and \(n \) is the customer number.

Mathematics • GSE Coordinate Algebra • Unit 3: Linear and Exponential Functions
Richard Woods, State School Superintendent
July 2016 • Page 55 of 93
All Rights Reserved
c. On Day 2, the first customer buys 1 pie, the second customer buys 2 pies, the third customer buys 4 pies, the fourth customer buys 8 pies, and so on. Complete the table based on the pattern established. Then calculate the total number of pies sold and dollars collected.

<table>
<thead>
<tr>
<th>Customer Number</th>
<th>Number of Pies Sold</th>
<th>Amount Collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>$5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>$10</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>$20</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>$40</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>$80</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>$160</td>
</tr>
<tr>
<td>7</td>
<td>64</td>
<td>$320</td>
</tr>
<tr>
<td>8</td>
<td>128</td>
<td>$640</td>
</tr>
<tr>
<td>9</td>
<td>256</td>
<td>$1280</td>
</tr>
<tr>
<td>10</td>
<td>512</td>
<td>$2560</td>
</tr>
<tr>
<td>total</td>
<td>1023</td>
<td>$5115</td>
</tr>
</tbody>
</table>

d. Write a recursive and explicit formula for the pies sold on Day 2.

Solution:
Since the number of pies sold to each customer doubles each time, we have the explicit formula that \(a_n = 2^{n-1} \), where \(a_n \) is the number of pies and \(n \) is the customer number. We also have that the recursive formula is \(a_n = 2a_{n-1} \), where \(a_n \) is the number of pies.

Extension: To obtain the explicit formula for the amount collected, we can multiply the number of pies sold by 5. This gives us \(a_n = 5(2)^{n-1} \), where \(a_n \) is the price of the pies and \(n \) is the customer number. Looking at a recursive pattern, we notice that the price column still doubles each time. This gives a recursive formula of \(a_n = 2a_{n-1} \) for the price of pies, where \(a_n \) is the cost of the pies.

8. Compare the rates of change on Day 1 and Day 2 for the number of pies sold.

Solution:
Answers may vary: Possible answer:
When the change in \(x \) is 1, Day 1 (linear) the change in \(y \) is a constant (slope). On day two, (exponential) the \(y \)-values are multiplied by a constant ratio to get the succeeding \(y \)-value.

9. Did Larry, Curly, and Moe earn enough in two days to fund their project? Consider costs incurred to bake the pies. Justify your reasoning.

Solution:
There are two ways students might answer this question. a) Students assume that $20 per 100 pies is really $0.20 per pie OR b) students assume that they must purchase pies in 100 pie increments.
Therefore…

On the first day, they sold 55 pies and made $275.

a) At a cost of $20 per 100 pies, they spent $11 on ingredients. This yields a profit of $264.

OR

b) They spent $20 on 100 pies, of which they sold 55. They yield a profit $255.

On the second day, they sold 1023 pies and made $5115.

a) At a cost of $20 per 100 pies, they spent $204.60 on ingredients. Their profit on day two was $4910.40.

OR

b) They spent $220 on 1100 pies, of which they sold 1023 pies. They yield a profit of $4895.

Combining their profit from day 1 and day 2 yields a total of

a) $5174.40 OR b) $5150.

Therefore, the trio reached their project goal of $5000.
Performance Task: Community Service, Sequences, and Functions

Name_________________________________ Date__________________

Mathematical Goals
• Recognize that sequences are functions sometimes defined recursively
• Use technology to graph and analyze functions
• Convert a recursive relationship into an explicit function
• Construct linear and exponential function (including reading these from a table)
• Observe the difference between linear and exponential functions

Essential Questions
• How are sequences and functions related? How can I model one with the other?

Georgia Standards of Excellence
MGSE9-12.F.IF.3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. (Generally, the scope of high school math defines this subset as the set of natural numbers 1, 2, 3, 4…) By graphing or calculating terms, students should be able to show how the recursive sequence \(a_1 = 7, a_n = a_{n-1} + 2\); the sequence \(s_n = 2(n - 1) + 7\); and the function \(f(x) = 2x + 5\) (where \(x\) is a natural number) all define the same sequence. (Draw connection to F.BF.2, which requires students to write arithmetic and geometric sequences.)

MGSE9-12.F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function \(h(n)\) gives the number of person-hours it takes to assemble \(n\) engines in a factory, then the positive integers would be an appropriate domain for the function. (Focus on linear and exponential functions.)

MGSE9-12.F.LE.1b Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

MGSE9-12.F.LE.1c Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

MGSE9-12.F.LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

MGSE9-12.F.LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.
MGSE9-12.F.BF.2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. Connect arithmetic sequences to linear functions and geometric sequences to exponential functions.

Standards for Mathematical Practice
4. Model with mathematics.

7. Look for and make use of structure.

8. Look for and express regularity in repeated reasoning.
Performance Task: Community Service, Sequences, and Functions

Larry, Moe, and Curly spend their free time doing community service projects. They would like to get more people involved. They began by observing the number of people who show up to the town cleanup activities each day. The data from their observations is recorded in the given table for the Great Four Day Cleanup.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>71</td>
</tr>
</tbody>
</table>

1. Give a verbal description of what the domain and range presented in the table represents.

2. Sketch the data on the grid below.

3. Determine the type of function modeled in the graph above and describe key features of the graph.

4. Based on the pattern in the data collected, what recursive process could Larry, Curly, and Moe write?

5. Write a linear equation to model the function.

6. How would Larry, Curly, and Moe use the explicit formula to predict the number of people who would help if the cleanup campaign went on for 7 days?
Excited about the growing number of people participating in community service, Larry, Curly, and Moe decide to have a fundraiser to plant flowers and trees in the parks that were cleaned during the Great Four Day cleanup. It will cost them $5,000 to plant the trees and flowers. They decide to sell some of the delicious pies that Moe bakes with his sisters. For every 100 pies sold, it costs Moe and his sisters $20.00 for supplies and ingredients to bake the pies. Larry, Curly, and Moe decide to sell the pies for $5.00 each.

7. Complete the following table to find the total number of pies sold and the amount of money the trio collects.

<table>
<thead>
<tr>
<th>Customer Number</th>
<th>Number of Pies Sold</th>
<th>Amount Collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>$5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>$10</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On Day 1, each customer buys the same number of pies as his customer number. In other words the first customer buys 1 pie, the second customer buys 2 pies. Fill in the table showing the number of pies and the amount collected on Day 1. Then calculate the total number of pies sold and dollars collected.

Write a recursive and explicit formula for the pies sold on Day 1. Explain your thinking.

On Day 2, the first customer buys 1 pie, the second customer buys 2 pies, the third customer buys 4 pies, the fourth customer buys 8 pies, and so on. Complete table based on the pattern established. Then calculate the total number of pies sold and dollars collected.

Write a recursive and explicit formula for the pies sold on Day 2. Explain your thinking.
8. Compare the rates of change on Day 1 and Day 2 for the number of pies sold.

9. Did Larry, Curly, and Moe earn enough in two days to fund their project? Consider costs incurred to bake the pies. Justify your reasoning.
Having Kittens (Formative Assessment Lesson)

Source: Formative Assessment Lesson Materials from Mathematics Assessment Project
http://map.mathshell.org/materials/download.php?fileid=1204

Task Comments and Introduction
Tasks and lessons from the Mathematics Assessment Project are specifically designed to help teachers effectively formatively assess their students. The way the tasks and lessons are designed gives the teacher a clear understanding of what the students are able to do and not do. Within the lesson, teachers will find suggestions and question prompts that will help guide students towards understanding. For more information access the MAP website:
http://www.map.mathshell.org/materials/background.php?subpage=formative

The task, Modeling: Having Kittens, is a Formative Assessment Lesson (FAL) that can be found at the website: http://map.mathshell.org/materials/lessons.php?taskid=407&subpage=problem

The FAL document provides a clear lesson design, from the opening of the lesson to the closing of the lesson.

The PDF version of the task can be found at the link below:
http://map.mathshell.org/materials/download.php?fileid=1204

Mathematical Goals
• Interpret a situation and represent the constraints and variables mathematically.
• Select appropriate mathematical methods to use.
• Make sensible estimates and assumptions.
• Investigate an exponentially increasing sequence.

Essential Questions
• How can I use mathematical models to determine whether the poster’s claim that one cat can have 2000 descendants in just 18 months is reasonable?

Georgia Standards of Excellence
MGSE9-12.F.LE.1 Distinguish between situations that can be modeled with linear functions and with exponential functions.

MGSE9-12.F.LE.1a Prove that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.

MGSE9-12.F.LE.1b Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
MGSE9-12.F.LE.1c Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

MGSE9-12.F.LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

MGSE9-12.F.LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

Standards for Mathematical Practice
1. Make sense of problems and persevere in solving them
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically

Background Knowledge
• The background knowledge required for this task is quite general. There are many entry points to this problem, all of which build from different types of background knowledge.

Common Misconceptions
• Students may forget that each new kitten can also have litters of its own after 4 months.
• Students must make assumptions in order to approach the problem. See discussion in “Solutions” of the FAL.

Materials
• see FAL website

Grouping
• Individual / small group
Interpreting Functions (Short Cycle Task)

Source: Formative Assessment Lesson Materials from Mathematics Assessment Project

Task Comments and Introduction
Tasks and lessons from the Mathematics Assessment Project are specifically designed to help teachers effectively formatively assess their students. The way the tasks and lessons are designed gives the teacher a clear understanding of what the students are able to do and not do. Within the lesson, teachers will find suggestions and question prompts that will help guide students towards understanding. For more information access the MAP website:
http://www.map.mathshell.org/materials/background.php?subpage=summative

The task, Interpreting Functions, is a Mathematics Assessment Project Assessment Task that can be found at the website: http://www.map.mathshell.org/materials/tasks.php?taskid=294&subpage=novice

The PDF version of the task can be found at the link below:

The scoring rubric can be found at the following link:

Mathematical Goals
• Interpret graphs of functions in context.

Essential Questions
• How can I relate graphs to the context they represent?

Georgia Standards of Excellence
MGSE9-12.F.IF.1 Understand that a function from one set (the input, called the domain) to another set (the output, called the range) assigns to each element of the domain exactly one element of the range, i.e. each input value maps to exactly one output value. If \(f \) is a function, \(x \) is the input (an element of its domain) and \(f(x) \) is the output (an element of the range). Graphically, the graph is \(y = f(x) \). (Draw examples from linear and exponential functions.)

MGSE9-12.F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. (Draw examples from linear and exponential functions.)
MGSE9-12.F.IF.3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. (Generally, the scope of high school math defines this subset as the set of natural numbers 1, 2, 3, 4, …) By graphing or calculating terms, students should be able to show how the recursive sequence \(a_1 = 7, a_n = a_{n-1} + 2 \); the sequence \(s_n = 2(n - 1) + 7 \); and the function \(f(x) = 2x + 5 \) (when \(x \) is a natural number) all define the same sequence. (Draw connection to F.BF.2, which requires students to write arithmetic and geometric sequences.)

MGSE9-12.F.IF.4 Using tables, graphs, and verbal descriptions, interpret key characteristics of a function which models the relationship between two quantities. Sketch a graph showing key features including: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. (Focus on linear and exponential functions.)

MGSE9-12.F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function \(h(n) \) gives the number of person-hours it takes to assemble \(n \) engines in a factory, then the positive integers would be an appropriate domain for the function. (Focus on linear and exponential functions.)

MGSE9-12.F.IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. (Focus on linear functions and intervals for exponential functions whose domain is a subset of the integers.)

MGSE9-12.F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology. (Focus on linear and exponential functions. Include comparisons of two functions presented algebraically.)

MGSE9-12.F.IF.7a Graph linear and quadratic functions and show intercepts, maxima, and minima (as determined by the function or by context).

MGSE9-12.F.IF.7e Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

MGSE9-12.F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has a larger maximum.) (Focus on linear and exponential functions. Include comparisons of two functions presented algebraically.)

Standards for Mathematical Practice
2. Reason abstractly and quantitatively.
6. Attend to precision.
Background Knowledge
- Students have experience relating graphs to real-life situations.

Common Misconceptions
- Students may believe that the vertical line, rather than the horizontal line, shows that the car is not moving.

Materials
- see FAL website

Grouping
- Individual / partner
Formative Assessment Lesson: Birthday Gifts and Turtle Problem
Source: Georgia Mathematics Design Collaborative

This lesson is intended to help you assess how well students are able to:

• Write linear and exponential functions from verbal sentences
• Understand the rates of change of linear functions are constant, while the rates of change of exponential functions are not constant

Georgia Standards of Excellence
MGSE9-12.F.LE.1 Distinguish between situations that can be modeled with linear functions and with exponential functions.

MGSE9-12.F.LE.1a Show that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals. (This can be shown by algebraic proof, with a table showing differences, or by calculating average rates of change over equal intervals).

MGSE9-12.F.LE.1b Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

MGSE9-12.F.LE.1c Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

MGSE9-12.F.LE.2 - Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

MGSE9-12.F.LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

Standards for Mathematical Practice
This lesson uses all of the practices with emphasis on:

1. Make sense of problems and persevere in solving them
2. Reason abstractly and quantitatively
4. Model with mathematics
6. Attend to precision
TASK DESCRIPTION, DEVELOPMENT AND DISCUSSION:

Tasks and lessons from the Georgia Mathematics Design Collaborative are specifically designed to help teachers effectively formatively assess their students. The way the tasks and lessons are designed gives the teacher a clear understanding of what the students are able to do and not do. Within the lesson, teachers will find suggestions and question prompts that will help guide students towards understanding.

The task, *Birthday Gifts and Turtle Problem*, is a Formative Assessment Lesson (FAL) that can be found at:
http://ccgpsmathematics9-10.wikispaces.com/Georgia+Mathematics+Design+Collaborative+Formative+Assessment+Lessons
Formative Assessment Lesson: Exploring Paths
Source: Georgia Mathematics Design Collaborative

This lesson is intended to help you assess how well students are able to:
- Utilize what they already know about linear functions and exponential functions in the context of different graphs
- Reason qualitatively, compares linear and exponential models verbally, numerically, algebraically, and graphically

Georgia Standards of Excellence
MGSE9-12.F.BF.1 Write a function that describes a relationship between two quantities

MGSE9-12.F.LE.1 Distinguish between situations that can be modeled with linear functions and with exponential functions.

MGSE9-12.F.LE.1a Show that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals. (This can be shown by algebraic proof, with a table showing differences, or by calculating average rates of change over equal intervals).

MGSE9-12.F.LE.1b Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

MGSE9-12.F.LE.1c Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

Standards for Mathematical Practice
This lesson uses all of the practices with emphasis on:

4. Model with mathematics
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning

TASK DESCRIPTION, DEVELOPMENT AND DISCUSSION:

Tasks and lessons from the Georgia Mathematics Design Collaborative are specifically designed to help teachers effectively formatively assess their students. The way the tasks and lessons are designed gives the teacher a clear understanding of what the students are able to do and not do. Within the lesson, teachers will find suggestions and question prompts that will help guide students towards understanding.

The task, Exploring Paths, is a Formative Assessment Lesson (FAL) that can be found at: http://ccgpsmathematics9-10.wikispaces.com/Georgia+Mathematics+Design+Collaborative+Formative+Assessment+Lessons
High Functioning! (Practice Task)

Introduction
Students are introduced to transformations of functions. In this task, students will focus on vertical translations of graphs of linear and make connections to the y-intercept. Transformations are approached from the perspective of using a constant, k, to make changes to the function. They will be able to answer questions such as: What happens when you add k to the input? What happens when k is a negative number?

Mathematical Goals
- Use graphs of vertical translations to determine function rules.
- Relate vertical translations of a linear function to its y-intercept.

Essential Questions
- How are functions affected by adding or subtracting a constant to the function?
- How does the vertical translation of a linear function model translations for other functions?

Georgia Standards of Excellence
MGSE9-12.F.BF.3 Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $k f(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. (Focus on vertical translations of graphs of linear and exponential functions. Relate the vertical translation of a linear function to its y-intercept.)

Standards for Mathematical Practice
3. Construct viable arguments and critique the reasoning of others.
 Students will make predictions based on observations of shifts and defend their reasoning.
6. Attend to precision.
 Students will need to graph equations precisely and use specific points to show the shifts.
7. Look for and express regularity in repeated reasoning.
 Students will look for patterns and use them to determine general rules.

Background Knowledge
- Students can graph linear equations.
- Students can read, write, and interpret function notation.
- Students have a basic idea of rotations and reflections and/or rotational and line symmetry.
Common Misconceptions
- Students may make very general/tangential observations and need to be directed.
- Students may not understand function notation well enough to write rules.

Materials
- Graphing Calculator (optional)

Grouping
- Partner / Individual

Differentiation
Extension:
- Students can use a graphing calculator to model more examples of linear and exponential functions and see the transformations that occur.

Intervention:
- Use strategic grouping to pair struggling students with resident experts.

Formative Assessment Questions
- How are translations of linear functions related to the y-intercept?
- How can we determine the relative location of a function given a translation in function notation?
High Functioning – Teacher Notes:

1. Graph and label the following functions.

 \[f(x) = 2x - 1 \]
 \[g(x) = 2x - 7 \]
 \[h(x) = 2x + 8 \]

2. What observations can you make about the three functions? Be sure to include observations about the characteristics and the location of the functions.

 Solution:
 Answers may vary. Students should note that the slopes of the functions are the same and that the lines are parallel. They should see that the y-intercept has changed in each function causing the function to move up and down.

3. Analyze specifically what happens to the y-intercepts \(f(0), g(0), \) and \(h(0) \) in the three functions.
 How does the y-intercept change from...
 a. \(f \to g? \)
 Solution:
 from -1 to -7; down 6

 b. \(g \to h? \)
 Solution:
 from -7 to +8; up 15

 c. \(f \to h? \)
 Solution:
 from -1 to +8; up 9

 d. \(h \to f? \)
 Solution:
 from +8 to -1; down 9
4. Find…
 a. \(f(1) \)
 \[\text{Solution:} \]
 \[2(1) - 1 = 1 \]
 b. \(g(1) \)
 \[\text{Solution:} \]
 \[2(1) - 7 = -5 \]
 c. \(h(1) \)
 \[\text{Solution:} \]
 \[2(1) + 8 = 10 \]

5. What changes in the output as you go from…
 a. \(f(1) \rightarrow g(1) \)?
 \[\text{Solution:} \]
 \[\text{from 1 to -5; down 6} \]
 b. \(g(1) \rightarrow h(1) \)?
 \[\text{Solution:} \]
 \[\text{from -5 to 10; up 15} \]
 c. \(f(1) \rightarrow h(1) \)?
 \[\text{Solution:} \]
 \[\text{from 1 to 10; up 9} \]
 d. \(h(1) \rightarrow f(1) \)?
 \[\text{Solution:} \]
 \[\text{from 10 to 1; down 9} \]

6. Comparing your answers to 3 and 5, what predictions can you make about other inputs?
 \[\text{Solution:} \]
 \[\text{The shifts in #3 (input } x = 0 \text{) and #5 (input } x = 1 \text{) are the same. We can predict that the shifts will be the same regardless of input.} \]
7. Write an algebraic rule for the following shifts.
 a. \(f(x) \rightarrow g(x) \)
 \[\text{Solution:} \quad g(x) = f(x) - 6 \]
 b. \(g(x) \rightarrow h(x) \)
 \[\text{Solution:} \quad h(x) = g(x) + 15 \]
 c. \(f(x) \rightarrow h(x) \)
 \[\text{Solution:} \quad h(x) = f(x) + 9 \]
 d. \(h(x) \rightarrow f(x) \)
 \[\text{Solution:} \quad f(x) = h(x) - 9 \]

8. Write a general rule for a vertical translation.
 \[\text{Solution:} \]
 Answers may vary. A vertical translation is a shift up or down on the coordinate plane caused by the addition (or subtraction) of a constant to the function.

Using the functions below, draw and label the given translations.
9. \(\begin{align*}
 a. \quad g(x) &= f(x) - 4 \\
 b. \quad h(x) &= f(x) + 2 \\
 c. \quad j(x) &= f(x) + 7
\end{align*} \)

10. \(\begin{align*}
 a. \quad g(x) &= f(x) + 3 \\
 b. \quad h(x) &= f(x) - 5 \\
 c. \quad j(x) &= f(x) - 2
\end{align*} \)
Practice Task: High Functioning

Name_________________________________ Date__________________

Mathematical Goals

- Use graphs of vertical translations to determine function rules.
- Relate vertical translations of a linear function to its y-intercept.

Essential Questions

- How are functions affected by adding or subtracting a constant to the function?
- How does the vertical translation of a linear function model translations for other functions?

Georgia Standards of Excellence

MGSE9-12.F.BF.3 Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $k f(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. (Focus on vertical translations of graphs of linear and exponential functions. Relate the vertical translation of a linear function to its y-intercept.)

Standards for Mathematical Practice

3. Construct viable arguments and critique the reasoning of others.
6. Attend to precision.
7. Look for and express regularity in repeated reasoning.
Practice Task: High Functioning

Name_________________________________ Date__________________

1. Graph and label the following functions.
 \[f(x) = 2x - 1 \]
 \[g(x) = 2x - 7 \]
 \[h(x) = 2x + 8 \]

2. What observations can you make about the three functions? Be sure to include observations about the characteristics and the location of the functions.

3. Analyze specifically what happens to the y-intercepts \(f(0) \), \(g(0) \), and \(h(0) \) in the three functions.
 How does the y-intercept change from…
 a. \(f \rightarrow g \)?
 b. \(g \rightarrow h \)?
 c. \(f \rightarrow h \)?
 d. \(h \rightarrow f \)?

4. Find…
 a. \(f(1) \)
 b. \(g(1) \)
 c. \(h(1) \)
5. What changes in the output as you go from…
 a. \(f(1) \rightarrow g(1) \)?

 b. \(g(1) \rightarrow h(1) \)?

 c. \(f(1) \rightarrow h(1) \)?

 d. \(h(1) \rightarrow f(1) \)?

6. Comparing your answers to 3 and 5, what predictions can you make about other inputs?

7. Write an algebraic rule for the following shifts.
 a. \(f(x) \rightarrow g(x) \)

 b. \(g(x) \rightarrow h(x) \)

 c. \(f(x) \rightarrow h(x) \)

 d. \(h(x) \rightarrow f(x) \)

8. Write a general rule for a vertical translation.

Using the functions below, draw and label the given translations.
9.
 a. \(g(x) = f(x) - 4 \)

 b. \(h(x) = f(x) + 2 \)

 c. \(j(x) = f(x) + 7 \)

10.
 d. \(g(x) = f(x) + 3 \)

 e. \(h(x) = f(x) - 5 \)

 f. \(j(x) = f(x) - 2 \)
Summing It Up: Putting the “Fun” in Functions (Culminating Task)

Introduction
In this culminating task, students will create a functions booklet or webpage using google sites (or a hosting site of similar nature). They will use all of their resources and previous tasks to help them think through ways to create scenarios, examples, and model the standards in this unit. Finally students will write a one page reflection on what they’ve learned throughout the unit and create a work cited page using MLA format of all resources used to design their book or webpage.

Mathematical Goals
- Understand the concept of a function and use function notation
- Interpret functions that arise in applications in terms of the context
- Analyze functions using different representations
- Building new functions from existing functions
- Construct and compare linear and exponential models and solve problems

Essential Questions
- How can I use and apply what I have learned about functions?

Georgia Standards of Excellence
MGSE9-12.F.IF.1 Understand that a function from one set (the input, called the domain) to another set (the output, called the range) assigns to each element of the domain exactly one element of the range, i.e. each input value maps to exactly one output value. If \(f \) is a function, \(x \) is the input (an element of its domain) and \(f(x) \) is the output (an element of the range). Graphically, the graph is \(y = f(x) \). (Draw examples from linear and exponential functions.)

MGSE9-12.F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. (Draw examples from linear and exponential functions.)

MGSE9-12.F.IF.3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. (Generally, the scope of high school math defines this subset as the set of natural numbers 1, 2, 3, 4, …) By graphing or calculating terms, students should be able to show how the recursive sequence \(a_1 = 7, a_n = a_{n-1} + 2 \); the sequence \(s_n = 2(n - 1) + 7 \); and the function \(f(x) = 2x + 5 \) (when \(x \) is a natural number) all define the same sequence. (Draw connection to F.BF.2, which requires students to write arithmetic and geometric sequences.)
MGSE9-12.F.IF.4 Using tables, graphs, and verbal descriptions, interpret the key characteristics of a function which models the relationship between two quantities. Sketch a graph showing key features including: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maxima and minima; symmetries; end behavior; and periodicity.

- Students should be able to interpret the intercepts; intervals where the function is increasing, decreasing, positive, or negative; and end behavior (including equations of asymptotes) of exponential functions.
- Compare and graph characteristics of a function represented in a variety of ways. Characteristics include domain, range, vertex, axis of symmetry, zeros, intercepts, extrema, points of discontinuity, intervals of increase and decrease, and rates of change.

MGSE9-12.F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. (Focus on linear and exponential functions.)

MGSE9-12.F.IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. (Focus on linear functions and intervals for exponential functions whose domain is a subset of the integers.)

MGSE9-12.F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (Focus on linear and exponential functions. Include comparisons of two functions presented algebraically.)

MGSE9-12.F.IF.7a Graph linear and quadratic functions and show intercepts, maxima, and minima (as determined by the function or by context).

MGSE9-12.F.IF.7e Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

MGSE9-12.F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). (Focus on linear and exponential functions. Include comparisons of two functions presented algebraically.)

MGSE9-12.F.BF.1 Write a function that describes a relationship between two quantities. (Limit to linear and exponential functions.)
MGSE9-12.F.BF.1a Determine an explicit expression, a recursive process (steps for calculation) from a context. *For example, if Jimmy starts out with $15 and earns $2 a day, the explicit expression “2x + 15” can be described recursively (either in writing or verbally) as “to find out how much money Jimmy will have tomorrow, you add $2 to his total today.” Jn = Jn – 1 + 2, J0 = 15. (Limit to linear and exponential functions.)*

MGSE9-12.F.BF.2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. Connect arithmetic sequences to linear functions and geometric sequences to exponential functions.

MGSE9-12.F.BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. *(Focus on vertical translations of graphs of linear and exponential functions. Relate the vertical translation of a linear function to its y-intercept.)*

MGSE9-12.F.LE.1 Distinguish between situations that can be modeled with linear functions and with exponential functions.

MGSE9-12.F.LE.1a Prove that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.

MGSE9-12.F.LE.1b Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

MGSE9-12.F.LE.1c Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

MGSE9-12.F.LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

MGSE9-12.F.LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

MGSE9-12.F.LE.5 Interpret the parameters in a linear or exponential function in terms of a context. *(Limit exponential functions to those of the form f(x) = bx + k.)*
Standards for Mathematical Practice
1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Students should use all eight SMPs when exploring this task.

Background Knowledge
- Students will apply everything they have learned in this unit.

Common Misconceptions
- Address misconceptions brought to light during the rest of the unit.

Materials
- Unit portfolio
- Culminating task guide
- Computer
- Graphing calculator
- Paper and pencil for planning
- Rubric

Grouping
- Individual / Partners
Summing It Up: Putting the “Fun” in Functions – Teacher Notes

In this unit you have learned the concept of a function and how to use function notation, interpret functions that arise in applications in terms of the context, analyze functions using different representations, building new functions from existing functions, and construct and compare linear and exponential models and solve problems.

Using the guide provided, you will construct a function booklet or create a webpage for students who will learn about linear and exponential functions next year. Before designing your booklet or webpage, use the guide to plan your pages or links. Make sure you use the graphing calculator to test all of your models prior to adding them to the booklet or webpage. Use the checklist to ensure that all parts of the task have been addressed.

Comment:
Walk through the guide/checklist with the students. Model using examples and discuss the use of technology (such as spreadsheets to create graphs and graphing calculators to check multiple representations of a function) in completing this culminating task. Remind students to label all parts, tables, the scale and axis for all graphs. Also, remind them to use complete thoughts. This task may take about three days to complete.

Examples for various parts of the assignment are given below.

Summing it Up: Putting the “Fun” in Functions Booklet / Webpage
Planning Guide and Checklist

☐ Booklet Cover/Home link on webpage: (1 point)
 ☐ Give your booklet/page a title
 ☐ Use a mathematical symbol or symbols that are unique to learning about functions on your cover or home link
 ☐ Include your name, date, and class period

☐ Table of Contents Page or Link: (1 point)
 ☐ Page number for unit Definitions or link to Definitions
 ☐ Page number or link for Function Notation
 ☐ Page number or link for Interpreting Linear and Exponential Functions Arising in Applications
 ☐ Page number or link for Analyzing Linear and Exponential Functions
 ☐ Page number or link for Constructing and Comparing Linear and Exponential Models
 ☐ Page number or link for Unit Reflection Summary
 ☐ Page number or link for Works Cited

☐ Definitions Page or Link: (8 points)
 ☐ Choose at least 10 important vocabulary words from the unit to define
 ☐ Provide a model or example of each vocabulary word. (You may use symbols, graphs, tables, or pictures.)
Function Notation Page or Link: (20 points)

- Provide at least one example of a domain and range that illustrates a function and explain why it is a function.
- Provide at least one example of a domain and range that is not a function and explain why.
- Create one real world scenario in which function notation may be used to model a linear function. Show how the function might be evaluated for inputs in the domain based on the context of the scenario.

 *Example: Marcus currently owns 200 songs in his iTunes collection. If he added 15 new songs each month, how many songs will he own in a year? The initial value for his function is 200 and the rate of change is 15 per month. With this information, we can write *f(x) = 15x + 200*. To show how to evaluate this function for the number of songs that he would have in one year, we would input 12.*

- Create one real world scenario in which function notation may be used to model an exponential function. Show how the function might be evaluated for inputs in the domain based on the context of the scenario.

 *Example: The population of the popular town of Smithville in 2003 was estimated to be 35,000 people with an annual rate of increase (growth) of about 2.4%. We can write *f(x) = ab^x*, with *x* as the number of years we would input.*

- Use the scenarios to create a recursive formula.

Interpreting Linear and Exponential Functions Arising in Applications: (20 points)

- Create a story that would generate a linear or exponential function and describe the meaning of key features (intercepts, intervals where the function is increasing, decreasing, positive, or negative; end behaviors) of the graph as they relate to the story.
- Show the graph of your function and relate the domain to the quantitative relationship it describes. Describe the rate of change for a linear function or the rate a change over an interval for an exponential function.

 *Example for the quantitative part of the story: You are hoping to make a profit on the school play and have determined the function describing the profit to be *f(t)= 8t - 2654* where *t* is the number of tickets sold. What is a reasonable domain for this function? Explain.*

Analyzing Linear and Exponential Functions: (10 points)

- Create one linear function expressed symbolically. Graph the function using technology (print for booklet or paste on web).
- Create one exponential function expressed symbolically. Graph the function using technology (print for booklet or paste on web).
- Create two different linear functions. Show one algebraically and the other using a verbal description. Compare the two functions.

 *Example: Which has a greater slope? *f(x) = x + 5* or a function representing the number of bottle caps in a shoebox where 5 are added each time.*
Building Functions: (10 points)
- Explain how to find an explicit expression, a recursive process, or steps for calculation to complete a sequence/pattern. Write the sequence both recursively and with an explicit formula.
 Example: Find the number of objects (squares, toothpicks, etc.) needed to make the next three patterns in a series. Show the recursive and explicit formula for the pattern created.
- Explain vertical translations. Create three vertical translations for a linear or exponential function. Graph all three on a single axes and compare and contrast the graphs.

Constructing and Comparing Linear and Exponential Models (20 points)
- Design a word problem that involves a linear and exponential model. Use a table or sequence to illustrate the relationships described in the models.
 Example: What’s the better deal, earning $1000 a day for the rest of your life or earning $.01 the first day, and doubling it every day for the rest of your life? How do you know? Do you think an 80-year-old would make the same choice? Should she?
- Explain the constant rate and constant percent rate per unit interval relative to another for the word problem that you designed.
- Construct the graphs for each model in the word problem that you designed.
- Compare the linear and exponential models from your word problem. Interpret the parameters.

Reflection / Summary: (8 points)
- Describe your learning journey throughout the unit. Reflect on topics that you found easy to learn and those that were most difficult.
- Are there any standards that you need more help grasping? Explain. If not, which standards do you have the best grasp? Explain.
- What advice would you give to other students that will learn about linear and exponential functions in the future?
- Which task(s) did you find the most beneficial to mastering key standards?
- Any other insight you would like to share about Unit 3.

Works Cited: (2 points)
- Use MLA format to cite any books, websites, and any other references used to create your booklet or webpage.
 Comment: Point students toward online citation tools to assist them.
Culminating Task: Summing It Up: Putting the “Fun” in Functions

Name_________________________________ Date__________________

Mathematical Goals
• Understand the concept of a function and use function notation
• Interpret functions that arise in applications in terms of the context
• Analyze functions using different representations
• Building new functions from existing functions
• Construct and compare linear and exponential models and solve problems

Essential Questions
• How can I use and apply what I have learned about functions?

Georgia Standards of Excellence
MGSE9-12.F.IF.1 Understand that a function from one set (the input, called the domain) to another set (the output, called the range) assigns to each element of the domain exactly one element of the range, i.e. each input value maps to exactly one output value. If \(f \) is a function, \(x \) is the input (an element of its domain) and \(f(x) \) is the output (an element of the range). Graphically, the graph is \(y = f(x) \). (Draw examples from linear and exponential functions.)

MGSE9-12.F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. (Draw examples from linear and exponential functions.)

MGSE9-12.F.IF.3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. (Generally, the scope of high school math defines this subset as the set of natural numbers 1, 2, 3, 4, …) By graphing or calculating terms, students should be able to show how the recursive sequence \(a_1 = 7, a_n = a_{n-1} + 2 \); the sequence \(s_n = 2(n - 1) + 7 \); and the function \(f(x) = 2x + 5 \) (when \(x \) is a natural number) all define the same sequence. (Draw connection to F.BF.2, which requires students to write arithmetic and geometric sequences.)

MGSE9-12.F.IF.4 Using tables, graphs, and verbal descriptions, interpret the key characteristics of a function which models the relationship between two quantities. Sketch a graph showing key features including: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.

• Students should be able to interpret the intercepts; intervals where the function is increasing, decreasing, positive, or negative; and end behavior (including equations of asymptotes) of exponential functions.
• Compare and graph characteristics of a function represented in a variety of ways. Characteristics include domain, range, vertex, axis of symmetry, zeros, intercepts, extrema, points of discontinuity, intervals of increase and decrease, and rates of change.

MGSE9-12.F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. (Focus on linear and exponential functions.)

MGSE9-12.F.IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. (Focus on linear functions and intervals for exponential functions whose domain is a subset of the integers.)

MGSE9-12.F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (Focus on linear and exponential functions. Include comparisons of two functions presented algebraically.)

MGSE9-12.F.IF.7a Graph linear and quadratic functions and show intercepts, maxima, and minima (as determined by the function or by context).

MGSE9-12.F.IF.7e Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

MGSE9-12.F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). (Focus on linear and exponential functions. Include comparisons of two functions presented algebraically.)

MGSE9-12.F.BF.1 Write a function that describes a relationship between two quantities. (Limit to linear and exponential functions.)

MGSE9-12.F.BF.1a Determine an explicit expression, a recursive process (steps for calculation) from a context. For example, if Jimmy starts out with $15 and earns $2 a day, the explicit expression “$2x + 15” can be described recursively (either in writing or verbally) as “to find out how much money Jimmy will have tomorrow, you add $2 to his total today.” $J_n = J_{n-1} + 2, J_0 = 15$. (Limit to linear and exponential functions.)

MGSE9-12.F.BF.2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. Connect arithmetic sequences to linear functions and geometric sequences to exponential functions.
MGSE9-12.F.BF.3 Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $kf(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. (Focus on vertical translations of graphs of linear and exponential functions. Relate the vertical translation of a linear function to its y-intercept.)

MGSE9-12.F.LE.1 Distinguish between situations that can be modeled with linear functions and with exponential functions.

MGSE9-12.F.LE.1a Prove that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.

MGSE9-12.F.LE.1b Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

MGSE9-12.F.LE.1c Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

MGSE9-12.F.LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

MGSE9-12.F.LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

MGSE9-12.F.LE.5 Interpret the parameters in a linear or exponential function in terms of a context. (Limit exponential functions to those of the form $f(x) = bx + k$.)

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.
Culminating Task: Summing It Up: Putting the “Fun” in Functions

Name_________________________________ Date__________________

In this unit you have learned the concept of a function and how to use function notation, interpret functions that arise in applications in terms of the context, analyze functions using different representations, building new functions from existing functions, and construct and compare linear and exponential models and solve problems.

Using the guide provided, you will construct a function booklet or create a webpage for students who will learn about linear and exponential functions next year. Before designing your booklet or webpage, use the guide to plan your pages or links. Make sure you use the graphing calculator to test all of your models prior to adding them to the booklet or webpage. Use the checklist to ensure that all parts of the task have been addressed.

Booklet/ Webpage Planning Guide and Checklist

- **Booklet Cover/Home link on webpage: (1 point)**
 - Give your booklet/page a title
 - Use a mathematical symbol or symbols that are unique to learning about functions on your cover or home link
 - Include your name, date, and class period

- **Table of Contents Page or Link: (1 point)**
 - Page number for unit Definitions or link to Definitions
 - Page number or link for Function Notation
 - Page number or link for Interpreting Linear and Exponential Functions Arising in Applications
 - Page number or link for Analyzing Linear and Exponential Functions
 - Page number or link for Building Functions
 - Page number or link for Constructing and Comparing Linear and Exponential Models
 - Page number or link for Unit Reflection Summary
 - Page number or link for Works Cited

- **Definitions Page or Link: (8 points)**
 - Choose at least 10 important vocabulary words from the unit to define
 - Provide a model or example of each vocabulary word. (You may use symbols, graphs, tables, or pictures.)

- **Function Notation Page or Link: (20 points)**
 - Provide at least one example of a domain and range that illustrates a function and explain why it is a function.
 - Provide at least one example of a domain and range that is not a function and explain why.
Create one real world scenario in which function notation may be used to model a linear function. Show how the function might be evaluated for inputs in the domain based on the context of the scenario.

Create one real world scenario in which function notation may be used to model an exponential function. Show how the function might be evaluated for inputs in the domain based on the context of the scenario.

Use the scenarios to create a recursive formula

Interpreting Linear and Exponential Functions Arising in Applications: (20 point)
- Create a story that would generate a linear or exponential function and describe the meaning of key features (intercepts, intervals where the function is increasing, decreasing, positive, or negative; end behaviors) of the graph as they relate to the story.
- Show the graph of your function and relate the domain to the quantitative relationship it describes. Describe the rate of change for a linear function or the rate a change over an interval for an exponential function.

Analyzing Linear and Exponential Functions: (10 points)
- Create one linear function expressed symbolically. Graph the function using technology (print for booklet or paste on web)
- Create one exponential function expressed symbolically. Graph the function using technology (print for booklet or paste on web)
- Create two different linear functions. Show one algebraically and the other using a verbal description. Compare the two functions.

Building Functions: (10 points)
- Explain how to find an explicit expression, a recursive process, or steps for calculation to complete a sequence/pattern. Write the sequence both recursively and with an explicit formula.
- Use all four operations to illustrate combinations of linear and/or exponential functions. (4 problems and solutions).
- Explain vertical translations. Create three vertical translations for a linear or exponential function. Graph all three on a single axes and compare and contrast the graphs.

Constructing and Comparing Linear and Exponential Models (20 points)
- Design a word problem that involves a linear and exponential model. Use a table or sequence to illustrate the relationships described in the models.
- Explain the constant rate and constant percent rate per unit interval relative to another for the word problem that you designed.
- Construct the graphs for each model in the word problem that you designed.
- Compare the linear and exponential models from your word problem. Interpret the parameters.
Reflection / Summary: (8 points)
- Describe your learning journey throughout the unit. Reflect on topics that you found easy to learn and those that were most difficult.
- Are there any standards that you need more help grasping? Explain. If not, which standards do you have the best grasp? Explain.
- What advice would you give to other students that will learn about linear and exponential functions in the future?
- Which task(s) did you find the most beneficial to mastering key standards?
- Any other insight you would like to share about Unit 3.

Works Cited: (2 points)
- Use MLA format to cite any books, websites, and any other references used to create your booklet or webpage.
The tasks featured in this table provide additional resources and supplemental tasks to be incorporated into unit 3 instruction as deemed appropriate by the instructor.

<table>
<thead>
<tr>
<th>UNIT 3: Linear Functions</th>
<th>Standards Addressed in the Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>More Graphing Stories</td>
<td>F-BF, F-IF</td>
</tr>
</tbody>
</table>
| http://graphingstories.com
Site Developed by Dan Meyer (1-3 Stories) | |
| Double Sunglasses | F-LE.1 |
| http://threeacts.mrmeyer.com/doublesunglasses
Task Developed by Dan Meyer | |
| Relation Stations | F-IF.1, F-BF.1, 1a, F-LE.1,1a,1b|
| http://musingmathematically.blogspot.ca/2013/02/relation-stations.html
Task Developed by Nat Banting | |
| Pixel Patterns | F-LE.2 |
Task Developed by Dan Meyer | |
| Math Taboo | F-LE 1,1a,1b |
Task Idea Developed by Fawn Nguyen | |
| Moving on Up | F-BF.1a, c; F-LE.2, F-IF.6,7a |
Task Developed by Geoff Krall on Emergent Math | |
| Taco Cart | F-IF.4 |
| http://threeacts.mrmeyer.com/tacocart
Task Developed by Dan Meyer | |
| “In and Out” hamburger math problem | F-LE.2 |
| http://robertkaplinsky.com/work/in-n-out-100-x-100/
Task Developed by Robert Kaplinsky | |
<table>
<thead>
<tr>
<th>Taxi</th>
<th>Task from Illustrative Math</th>
<th>A.REI.10, F.LE.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>https://www.illustrativemathematics.org/illustrations/243</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food Supply</td>
<td>Task from Illustrative Math</td>
<td>A.REI.11, F.LE.2, F.LE.3</td>
</tr>
<tr>
<td>https://www.illustrativemathematics.org/illustrations/645</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Points on a Graph</td>
<td>Task from Illustrative Math</td>
<td>F.IF.1</td>
</tr>
<tr>
<td>https://www.illustrativemathematics.org/illustrations/630</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Customers</td>
<td>Task from Illustrative Math</td>
<td>F.IF.1</td>
</tr>
<tr>
<td>https://www.illustrativemathematics.org/illustrations/624</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using Function Notation</td>
<td>Task from Illustrative Math</td>
<td>F.IF.1</td>
</tr>
<tr>
<td>https://www.illustrativemathematics.org/illustrations/598</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do Two Points Always Determine a Straight Line?</td>
<td>Task from Illustrative Math</td>
<td>F.IF.1, LE.2</td>
</tr>
<tr>
<td>https://www.illustrativemathematics.org/illustrations/377</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warming and Cooling</td>
<td>Task from Illustrative Math</td>
<td>F.IF.4</td>
</tr>
<tr>
<td>https://www.illustrativemathematics.org/illustrations/639</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Random Walk</td>
<td>Task from Illustrative Math</td>
<td>F.IF.2</td>
</tr>
<tr>
<td>https://www.illustrativemathematics.org/illustrations/626</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>