Georgia Standards of Excellence
Curriculum Map

Mathematics

GSE Pre-Calculus

These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement.
GSE Pre-Calculus Curriculum Map

<table>
<thead>
<tr>
<th>1st Semester</th>
<th>2nd Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1</td>
<td>Unit 2</td>
</tr>
<tr>
<td>Introduction to Trigonometric Functions (4 – 5 weeks)</td>
<td>Trigonometric Functions (4 – 5 weeks)</td>
</tr>
</tbody>
</table>

These units were written to build upon concepts from prior units, so later units contain tasks that depend upon the concepts addressed in earlier units. All units will include the Mathematical Practices and indicate skills to maintain.

NOTE: Mathematical standards are interwoven and should be addressed throughout the year in as many different units and tasks as possible in order to stress the natural connections that exist among mathematical topics.

Grade 9-12 Key:
- **Number and Quantity Strand:** RN = The Real Number System, Q = Quantities, CN = Complex Number System, VM = Vector and Matrix Quantities
- **Algebra Strand:** SSE = Seeing Structure in Expressions, APR = Arithmetic with Polynomial and Rational Expressions, CED = Creating Equations, REI = Reasoning with Equations and Inequalities
- **Functions Strand:** IF = Interpreting Functions, LE = Linear and Exponential Models, BF = Building Functions, TF = Trigonometric Functions
- **Geometry Strand:** CO = Congruence, SRT = Similarity, Right Triangles, and Trigonometry, C = Circles, GPE = Expressing Geometric Properties with Equations, GMD = Geometric Measurement and Dimension, MG = Modeling with Geometry
- **Statistics and Probability Strand:** ID = Interpreting Categorical and Quantitative Data, IC = Making Inferences and Justifying Conclusions, CP = Conditional Probability and the Rules of Probability, MD = Using Probability to Make Decisions
Georgia Standards of Excellence Pre-Calculus
Curriculum Map Rationale

Unit 1: Students will use the unit circle to extend the domain of trigonometric functions to include all real numbers. Students will develop understanding of the radian measure of an angle, graph trigonometric functions, and derive and apply the Pythagorean identity.

Unit 2: Building on standards from Unit 1, students extend their study of the unit circle and trigonometric functions. Students will create inverses of trigonometric functions and use the inverse functions to solve trigonometric equations that arise in real-world problems.

Unit 3: Building on standards from Unit 1 and Unit 2, students will apply trigonometry to general triangles. Students will derive the trigonometric formula for the area of a triangle and prove and use the Laws of Sines and Cosines to solve problems.

Unit 4: Building on standards from the first three units, students will prove and use addition, subtraction, double, and half-angle formulas to solve problems.

Unit 5: Students will perform operations on matrices, use matrices in applications, and use matrices to represent and solve systems of equations.

Unit 6: Building on standards from previous courses, students will derive the equations of conic sections (parabolas, ellipses, and hyperbolas). Students will solve systems of a linear and quadratic equation in two variables.

Unit 7: Students will extend their understanding of complex numbers and their operations through graphical representations. Students will perform operations on vectors and use the operations to represent various quantities.

Unit 8: Students will extend their study of probability by computing and interpreting probabilities of compound events. Students will calculate expected values and use them to solve problems and make informed decisions.
GSE Pre-Calculus Expanded Curriculum Map – 1st Semester

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

1st Semester

<table>
<thead>
<tr>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
<th>Unit 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Trigonometric Functions</td>
<td>Trigonometric Functions</td>
<td>Trigonometry of General Triangles</td>
<td>Trigonometric Identities</td>
</tr>
</tbody>
</table>

Interpret functions that arise in applications in terms of the context

MGSE9-12.F.IF.4 Using tables, graphs, and verbal descriptions, interpret the key characteristics of a function which models the relationship between two quantities. Sketch a graph showing key features including: intercepts; interval where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.

Analyze functions using different representations

MGSE9-12.F.IF.7 Graph functions expressed algebraically and show key features of the graph both by hand and by using technology.

Build new functions from existing functions

MGSE9-12.F.BF.4 Find inverse functions.

MGSE9-12.F.BF.4d Produce an invertible function from a non-invertible function by restricting the domain.

MGSE9-12.F.TF.3 Use special triangles to determine geometrically the values of sine, cosine, tangent for π/3, π/4 and π/6, and use the unit circle to express the values of sine, cosine, and tangent for π - x, π + x, and 2π - x in terms of their values for x, where x is any real number.

MGSE9-12.F.TF.4 Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.

Apply trigonometry to general triangles

MGSE9-12.G.SRT.9 Derive the formula A = (1/2)ab sin(C) for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.

MGSE9-12.G.SRT.10 Prove the Laws of Sines and Cosines and use them to solve problems.

MGSE9-12.G.SRT.11 Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).

Prove and apply trigonometric identities

MGSE9-12.F.TF.9 Prove addition, subtraction, double and half-angle formulas for sine, cosine, and tangent and use them to solve problems.

Model periodic phenomena with trigonometric functions

MGSE9-12.F.TF.5 Choose trigonometric functions to model periodic phenomena with
specified amplitude, frequency, and midline.
Prove and apply trigonometric identities
MGSE9-12.F.TF.8 Prove the Pythagorean identity \((\sin A)^2 + (\cos A)^2 = 1\) and use it to find \(\sin A\), \(\cos A\), or \(\tan A\), given \(\sin A\), \(\cos A\), or \(\tan A\), and the quadrant of the angle.
GSE Pre-Calculus Expanded Curriculum Map – 2nd Semester

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

2nd Semester

<table>
<thead>
<tr>
<th>Unit 5</th>
<th>Unit 6</th>
<th>Unit 7</th>
<th>Unit 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrices</td>
<td>Conics</td>
<td>Vectors</td>
<td>Probability</td>
</tr>
</tbody>
</table>

Perform operations on matrices and use matrices in applications
- MGSE9-12.N.VM.6 Use matrices to represent and manipulate data, e.g., transformations of vectors.
- MGSE9-12.N.VM.7 Multiply matrices by scalars to produce new matrices.
- MGSE9-12.N.VM.8 Add, subtract, and multiply matrices of appropriate dimensions.
- MGSE9-12.N.VM.9 Understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties.
- MGSE9-12.N.VM.10 Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse.
- MGSE9-12.N.VM.12 Work with 2 X 2 matrices as transformations of the plane, and interpret the absolute value of the determinant in terms of area.

Solve systems of equations
- MGSE9-12.A.REI.7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = -3x and the circle x² + y² = 3.

Translate between the geometric description and the equation for a conic section
- MGSE9-12.G.GPE.2 Derive the equation of a parabola given a focus and directrix.
- MGSE9-12.G.GPE.3 Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.

Represent complex numbers and their operations on the complex plane
- MGSE9-12.N.CN.4 Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.

Use properties of rational and irrational numbers
- MGSE9-12.N.CN.3 Find the conjugate of a complex number; use the conjugate to find the absolute value (modulus) and quotient of complex numbers.

Represent model with vector quantities
- MGSE9-12.N.VM.1 Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., v, ||v||, |v|, v).
- MGSE9-12.N.VM.2 Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.

Use the rules of probability to compute probabilities of compound events in a uniform probability model
- MGSE9-12.S.CP.8 Apply the general Multiplication Rule in a uniform probability model, P(A and B) = [P(A)]x[P(B|A)] = [P(B)]x[P(A|B)], and interpret the answer in terms of the model.

Calculate expected values and use them to solve problems
- MGSE9-12.S.MD.1 Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions.
- MGSE9-12.S.MD.2 Calculate the expected value of a random variable; interpret it as the mean of the probability distribution.
- MGSE9-12.S.MD.3 Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value. For example, find the theoretical probability distribution for the number of correct answers obtained by guessing on all five questions of a multiple-choice test where each question has four choices, and find the expected grade under various grading schemes.
- MGSE9-12.S.MD.4 Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value.
| MGSE-9.N.VM.3 Solve problems involving velocity and other quantities that can be represented by vectors. |
| Perform operations on vectors |
| MGSE-9.N.VM.4 Add and subtract vectors. |
| MGSE-9.N.VM.4a Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes. |
| MGSE-9.N.VM.4b Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum. |
| MGSE-9.N.VM.4c Understand vector subtraction $v - w$ as $v + (-w)$, where $(-w)$ is the additive inverse of w, with the same magnitude as w and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise. |
| MGSE-9.N.VM.5 Multiply a vector by a scalar. |
| MGSE-9.N.VM.5a Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g., as $c(v_x, v_y) = (cv_x, cv_y)$. |
| MGSE-9.N.VM.5b Compute the magnitude of a scalar multiple cv using $||cv|| = |c|v$. Compute the direction of cv knowing that when $|cv| = 0$, the direction of cv is either along v (for $c > 0$) or against v (for $c < 0$). |
| MGSE-9.N.VM.11 Multiply a vector (regarded as a matrix with one column) by a matrix of suitable dimensions to produce another vector. Work with matrices as transformations of vectors. |

For example, find a current data distribution on the number of TV sets per household in the United States, and calculate the expected number of sets per household. How many TV sets would you expect to find in 100 randomly selected households?

Use probability to evaluate outcomes of decisions

MGSE-9.S.MD.5 Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values.

MGSE-9.S.MD.5a Find the expected payoff for a game of chance. For example, find the expected winnings from a state lottery ticket or a game at a fast-food restaurant.

MGSE-9.S.MD.5b Evaluate and compare strategies on the basis of expected values. For example, compare a high-deductible versus a low-deductible automobile insurance policy using various, but reasonable, chances of having a minor or a major accident.

MGSE-9.S.MD.6 Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).

MGSE-9.S.MD.7 Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).