Physical Science (Grades 9-12 Content Standard B)

Structure of Atoms	SES
Radioactive isotopes are unstable and undergo spontaneous nuclear reactions, emitting particles and/or	1c
wavelike radiation. The decay of any one nucleus cannot be predicted, but a large group of identical	4e
nuclei decay at a predictable rate. This predictability can be used to estimate the age of materials that	
contain radioactive isotopes.	

Life Science (Grades 9-12 Content Standard C)

Biological Evolution	SES
The great diversity of organisms is the result of more than 3.5 billion years of evolution that has filled	6d
every available niche with life forms.	
Natural selection and its evolutionary consequences provide a scientific explanation for the fossil record	6d
of ancient life forms, as well as for the striking molecular similarities observed among the diverse	
species of living organisms.	
The millions of different species of plants, animals, and microorganisms that live on earth today are	6d
related by descent from common ancestors.	

The Interdependence of Organisms

The atoms and molecules on the earth cycle among the living and nonliving components of the	6c
biosphere.	
Human beings live within the world's ecosystems. Increasingly, humans modify ecosystems as a result	6c
of population growth, technology, and consumption. Human destruction of habitats through direct	
harvesting, pollution, atmospheric changes, and other factors is threatening current global stability, and	
if not addressed, ecosystems will be irreversibly affected.	

Matter, Energy, and Organization in Living Systems

As matter and energy flows through different levels of organization of living systems—cells, organs, organisms, communities—and between living systems and the physical environment, chemical elements are recombined in different ways. Each recombination results in storage and dissipation of energy into the environment as heat. Matter and energy are conserved in each change.

Earth and Space Science (Grades 9-12 Content Standard D)

Energy in the Earth System	SES
Earth systems have internal and external sources of energy, both of which create heat. The sun is the	1a
major external source of energy. Two primary sources of internal energy are the decay of radioactive	
isotopes and the gravitational energy from the earth's original formation.	
The outward transfer of earth's internal heat drives convection circulation in the mantle that propels the	1a
plates comprising earth's surface across the face of the globe.	
Heating of earth's surface and atmosphere by the sun drives convection within the atmosphere and	5a
oceans, producing winds and ocean currents.	
Global climate is determined by energy transfer from the sun at and near the earth's surface. This energy	5c
transfer is influenced by dynamic processes such as cloud cover and the earth's rotation, and static	5d
conditions such as the position of mountain ranges and oceans.	

SES

SES

Earth and Space Science, continued

Geochemical Cycles	SES
The earth is a system containing essentially a fixed amount of each stable chemical atom or element.	1e
Each element can exist in several different chemical reservoirs. Each element on earth moves among	6c
reservoirs in the solid earth, oceans, atmosphere, and organisms as part of geochemical cycles.	
Movement of matter between reservoirs is driven by the earth's internal and external sources of energy.	1e
These movements are often accompanied by a change in the physical and chemical properties of the	6c
matter. Carbon, for example, occurs in carbonate rocks such as limestone, in the atmosphere as carbon	
dioxide gas, in water as dissolved carbon dioxide, and in all organisms as complex molecules that	
control the chemistry of life.	

The Origin and Evolution of the Earth System

SES

The sun, the earth, and the rest of the solar system formed from a nebular cloud of dust and gas 4.6	1a
billion years ago. The early earth was very different from the planet we live on today.	
Geologic time can be estimated by observing rock sequences and using fossils to correlate the	4a
sequences at various locations. Current methods include using the known decay rates of radioactive	4b
isotopes present in rocks to measure the time since the rock was formed.	4c
	4d
	4e
Interactions among the solid earth, the oceans, the atmosphere, and organisms have resulted in the	2b
Interactions among the solid earth, the oceans, the atmosphere, and organisms have resulted in the ongoing evolution of the earth system. We can observe some changes such as earthquakes and volcanic	2b 2c
Interactions among the solid earth, the oceans, the atmosphere, and organisms have resulted in the ongoing evolution of the earth system. We can observe some changes such as earthquakes and volcanic eruptions on a human time scale, but many processes such as mountain building and plate movements	2b 2c 3e
Interactions among the solid earth, the oceans, the atmosphere, and organisms have resulted in the ongoing evolution of the earth system. We can observe some changes such as earthquakes and volcanic eruptions on a human time scale, but many processes such as mountain building and plate movements take place over hundreds of millions of years.	2b 2c 3e 6e
Interactions among the solid earth, the oceans, the atmosphere, and organisms have resulted in the ongoing evolution of the earth system. We can observe some changes such as earthquakes and volcanic eruptions on a human time scale, but many processes such as mountain building and plate movements take place over hundreds of millions of years. Evidence for one-celled forms of lifethe bacteriaextends back more than 3.5 billion years. The	2b 2c 3e 6e 6e
Interactions among the solid earth, the oceans, the atmosphere, and organisms have resulted in the ongoing evolution of the earth system. We can observe some changes such as earthquakes and volcanic eruptions on a human time scale, but many processes such as mountain building and plate movements take place over hundreds of millions of years. Evidence for one-celled forms of lifethe bacteriaextends back more than 3.5 billion years. The evolution of life caused dramatic changes in the composition of the earth's atmosphere, which did not	2b 2c 3e 6e 6e
Interactions among the solid earth, the oceans, the atmosphere, and organisms have resulted in the ongoing evolution of the earth system. We can observe some changes such as earthquakes and volcanic eruptions on a human time scale, but many processes such as mountain building and plate movements take place over hundreds of millions of years. Evidence for one-celled forms of lifethe bacteriaextends back more than 3.5 billion years. The evolution of life caused dramatic changes in the composition of the earth's atmosphere, which did not originally contain oxygen.	2b 2c 3e 6e 6e