Physical Science Curriculum

The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science. The Project 2061’s *Benchmarks for Science Literacy* is used as the core of the curriculum to determine appropriate content and process skills for students. The GPS is also aligned to the National Research Council’s *National Science Education Standards*. Technology is infused into the curriculum. The relationship between science, our environment, and our everyday world is crucial to each student’s success and should be emphasized.

The performance standards should drive instruction. Hands-on, student-centered, and inquiry-based approaches should be the emphases of instruction. This curriculum is intended as a required curriculum that would show proficiency in science, and instruction should extend beyond the curriculum to meet the student needs.

The hands-on nature of the science curriculum standards increases the need for teachers to use appropriate precautions in the laboratory and field. The guidelines for the safe use, storage, and disposal of materials must be observed. Safety of the student should always be foremost in science instruction.

Science consists of a way of thinking and investigating, and includes a growing body of knowledge about the natural world. To become literate in science, therefore, students need to acquire understandings of both the Characteristics of Science and its Content. The Georgia Performance Standards for Science require that instruction be organized so that these are treated together. Therefore, **A CONTENT STANDARD IS NOT MET UNLESS APPLICABLE CHARACTERISTICS OF SCIENCE ARE ALSO ADDRESSED AT THE SAME TIME.** For this reason they are presented as co-requisites.

This Performance Standards document includes four major components. They are

- **The Standards for Georgia Science Courses.** The Characteristics of Science co-requisite standards are listed first followed by the Content co-requisite standards. Each Standard is followed by elements that indicate the specific learning goals associated with it.

- **Tasks that students should be able to perform during or by the end of the course.** These tasks are keyed to the relevant Standards. Some of these can serve as activities that will help students achieve the learning goals of the Standard while others can be used to assess student learning. Many of these tasks can serve both purposes.

- **Samples of student work.** As a way of indicating what it takes to meet a Standard, examples of successful student work are provided. Many of these illustrate how student work can bridge the Content and Characteristics of Science Standards. The Georgia DOE Standards web site will continue to add samples as they are identified, and teachers are encouraged to submit examples from their own classroom experiences.

- **Teacher Commentary.** Teacher commentary is meant to open the pathways of communication between students and the classroom teacher. Showing students why they did or did not meet a standard enables them to take ownership of their own learning.
Georgia Performance Science Standards-- Explanation of Coding

Characteristics of Science Standards

SKCS1
Science Kindergarten Characteristics of Science Standard #1

S8CS2
Science Grade 8 Characteristics of Science Standard #2

SCSh8
Science Characteristics of Science high school Standard #8

Content Standards

S5P3
Science Grade 5 Physical Science Standard #3

S4E2
Science Grade 4 Earth Science Standard #2

S7L4
Science Grade 7 Life Science Standard #4

SC1
Science Chemistry Standard #1

SB4
Science Biology Standard #4

SPS6
Science Physical Science Standard #6

SP3
Science Physics Standard #3
Physical Science

The Physical Science curriculum is designed to continue student investigations of the physical sciences that began in grades K-8 and provide students the necessary skills to have a richer knowledge base in physical science. This course is designed as a survey course of chemistry and physics. This curriculum includes the more abstract concepts such as the conceptualization of the structure of atoms, motion and forces, and the conservation of energy and matter, the action/reaction principle, and wave behavior. Students investigate physical science concepts through experience in laboratories and field work using the processes of inquiry.

Major Concepts/Skills:
- Classifications of Matter
- Atomic Theory/Configuration
- Periodicity
- Bonding/Nomenclature
- Chemical Reactions
- Law of Conservation of Matter
- Solutions
- Acid/Base Chemistry
- Phase Changes
- Laws of Motion and Force
- Energy Transformation
- Electrical/Magnetic Forces
- Wave Properties

Concepts/Skills to Maintain:
- Characteristics of Science
- Records investigations clearly and accurately
- Uses scientific tools
- Interprets graphs, tables, and charts
- Writes clearly
- Uses proper units
- Organizes data into graphs, tables, charts
- Uses models
- Asks quality questions
- Uses technology
- Uses safety techniques
- Analyzes data via calculations and inference
- Recognizes the importance of explaining data with precision and accuracy

Co-Requisite – Characteristics of Science

Habits of Mind

SCSh1. Students will evaluate the importance of curiosity, honesty, openness, and skepticism in science.

a. Exhibit the above traits in their own scientific activities.
b. Recognize that different explanations often can be given for the same evidence.
c. Explain that further understanding of scientific problems relies on the design and execution of new experiments which may reinforce or weaken opposing explanations.

SCSh2. Students will use standard safety practices for all classroom laboratory and field investigations.

a. Follow correct procedures for use of scientific apparatus.
b. Demonstrate appropriate techniques in all laboratory situations.
c. Follow correct protocol for identifying and reporting safety problems and violations.

SCSh3. Students will identify and investigate problems scientifically.

a. Suggest reasonable hypotheses for identified problems.
b. Develop procedures for solving scientific problems.

c. Collect, organize and record appropriate data.

d. Graphically compare and analyze data points and/or summary statistics.

e. Develop reasonable conclusions based on data collected.

f. Evaluate whether conclusions are reasonable by reviewing the process and checking against other available information.

SCSh4. **Students will use tools and instruments for observing, measuring, and manipulating scientific equipment and materials.**

a. Develop and use systematic procedures for recording and organizing information.

b. Use technology to produce tables and graphs.

c. Use technology to develop, test, and revise experimental or mathematical models.

SCSh5. **Students will demonstrate the computation and estimation skills necessary for analyzing data and developing reasonable scientific explanations.**

a. Trace the source on any large disparity between estimated and calculated answers to problems.

b. Consider possible effects of measurement errors on calculations.

[c. Recognize the relationship between accuracy and precision.](#)

d. Express appropriate numbers of significant figures for calculated data, using scientific notation where appropriate.

e. Solve scientific problems by substituting quantitative values, using dimensional analysis, and/or simple algebraic formulas as appropriate.

SCSh6. **Students will communicate scientific investigations and information clearly.**

a. Write clear, coherent laboratory reports related to scientific investigations.

b. Write clear, coherent accounts of current scientific issues, including possible alternative interpretations of the data.

c. Use data as evidence to support scientific arguments and claims in written or oral presentations.

d. Participate in group discussions of scientific investigation and current scientific issues.

The Nature of Science

SCSh7. **Students will analyze how scientific knowledge is developed.**

Students will recognize that:

a. The universe is a vast single system in which the basic principles are the same everywhere.

b. Universal principles are discovered through observation and experimental verification.

c. From time to time, major shifts occur in the scientific view of how the world works. More often, however, the changes that take place in the body of scientific knowledge are small modifications of prior knowledge. Major shifts in scientific views typically
occurs after the observation of a new phenomenon or an insightful interpretation of existing data by an individual or research group.

d. Hypotheses often cause scientists to develop new experiments that produce additional data.

e. Testing, revising, and occasionally rejecting new and old theories never ends.

SCSh8. **Students will understand important features of the process of scientific inquiry.**

Students will apply the following to inquiry learning practices:

a. Scientific investigators control the conditions of their experiments in order to produce valuable data.

b. Scientific researchers are expected to critically assess the quality of data including possible sources of bias in their investigations’ hypotheses, observations, data analyses, and interpretations.

c. Scientists use practices such as peer review and publication to reinforce the integrity of scientific activity and reporting.

d. The merit of a new theory is judged by how well scientific data are explained by the new theory.

e. The ultimate goal of science is to develop an understanding of the natural universe which is free of biases.

f. Science disciplines and traditions differ from one another in what is studied, techniques used, and outcomes sought.

Reading Standard Comment

After the elementary years, students are seriously engaged in reading for learning. This process sweeps across all disciplinary domains, extending even to the area of personal learning. Students encounter a variety of informational as well as fictional texts, and they experience text in all genres and modes of discourse. In the study of various disciplines of learning (language arts, mathematics, science, social studies), students must learn through reading the communities of discourse of each of those disciplines. Each subject has its own specific vocabulary, and for students to excel in all subjects, they must learn the specific vocabulary of those subject areas in context.

Beginning with the middle grades years, students begin to self-select reading materials based on personal interests established through classroom learning. Students become curious about science, mathematics, history, and literature as they form contexts for those subjects related to their personal and classroom experiences. As students explore academic areas through reading, they develop favorite subjects and become confident in their verbal discourse about those subjects.

Reading across curriculum content develops both academic and personal interests in students. As students read, they develop both content and contextual vocabulary. They also build good habits for reading, researching, and learning. The Reading Across the Curriculum standard focuses on the academic and personal skills students acquire as they read in all areas of learning.
SCSh9. Students will enhance reading in all curriculum areas by:
 a. Reading in All Curriculum Areas
 ● Read a minimum of 25 grade-level appropriate books per year from a variety of
 subject disciplines and participate in discussions related to curricular learning in
 all areas.
 ● Read both informational and fictional texts in a variety of genres and modes of
 discourse.
 ● Read technical texts related to various subject areas.
b. Discussing books
 ● Discuss messages and themes from books in all subject areas.
 ● Respond to a variety of texts in multiple modes of discourse.
 ● Relate messages and themes from one subject area to messages and themes in
 another area.
 ● Evaluate the merit of texts in every subject discipline.
 ● Examine author’s purpose in writing.
 ● Recognize the features of disciplinary texts.
c. Building vocabulary knowledge
 ● Demonstrate an understanding of contextual vocabulary in various subjects.
 ● Use content vocabulary in writing and speaking.
 ● Explore understanding of new words found in subject area texts.
d. Establishing context
 ● Explore life experiences related to subject area content.
 ● Discuss in both writing and speaking how certain words are subject area related.
 ● Determine strategies for finding content and contextual meaning for unknown
 words.

Co-Requisite – Content

SPS1. Students will investigate our current understanding of the atom.
 a. Examine the structure of the atom in terms of
 ● proton, electron, and neutron locations.
 ● atomic mass and atomic number.
 ● atoms with different numbers of neutrons (isotopes).
 ● explain the relationship of the proton number to the element’s identity.
b. Compare and contrast ionic and covalent bonds in terms of electron movement.

SPS2. Students will explore the nature of matter, its classifications, and its system for naming
 types of matter.
 a. Calculate density when given a means to determine a substance’s mass and volume.
b. Predict formulas for stable binary ionic compounds based on balance of charges.
c. Use IUPAC nomenclature for transition between chemical names and chemical formulas of
 ● binary ionic compounds (containing representative elements).
binary covalent compounds (i.e. carbon dioxide, carbon tetrachloride).

d. Demonstrate the Law of Conservation of Matter in a chemical reaction.
e. Apply the Law of Conservation of Matter by balancing the following types of chemical equations:
 - Synthesis
 - Decomposition
 - Single Replacement
 - Double Replacement

SPS3. Students will distinguish the characteristics and components of radioactivity.
 a. Differentiate among alpha and beta particles and gamma radiation.
 b. Differentiate between fission and fusion.
 c. Explain the process half-life as related to radioactive decay.
 d. Describe nuclear energy, its practical application as an alternative energy source, and its potential problems.

SPS4. Students will investigate the arrangement of the Periodic Table.
 a. Determine the trends of the following:
 - Number of valence electrons
 - Types of ions formed by representative elements
 - Location of metals, nonmetals, and metalloids
 - Phases at room temperature
 b. Use the Periodic Table to predict the above properties for representative elements.

SPS5. Students will compare and contrast the phases of matter as they relate to atomic and molecular motion.
 a. Compare and contrast the atomic/molecular motion of solids, liquids, gases and plasmas.
 b. Relate temperature, pressure, and volume of gases to the behavior of gases.

SPS6. Students will investigate the properties of solutions.
 a. Describe solutions in terms of
 - solute/solvent
 - conductivity
 - concentration
 b. Observe factors affecting the rate a solute dissolves in a specific solvent.
 c. Demonstrate that solubility is related to temperature by constructing a solubility curve.
 d. Compare and contrast the components and properties of acids and bases.
 e. Determine whether common household substances are acidic, basic, or neutral.

SPS7. Students will relate transformations and flow of energy within a system.
 a. Identify energy transformations within a system (e.g. lighting of a match).
 b. Investigate molecular motion as it relates to thermal energy changes in terms of conduction, convection, and radiation.
c. Determine the heat capacity of a substance using mass, specific heat, and temperature.
d. Explain the flow of energy in phase changes through the use of a phase diagram.

SPS8. Students will determine relationships among force, mass, and motion.

a. Calculate velocity and acceleration.
b. Apply Newton’s three laws to everyday situations by explaining the following:
 - Inertia
 - Relationship between force, mass and acceleration
 - Equal and opposite forces
c. Relate falling objects to gravitational force
d. Explain the difference in mass and weight.
e. Calculate amounts of work and mechanical advantage using simple machines.

SPS9. Students will investigate the properties of waves.

a. Recognize that all waves transfer energy.
b. Relate frequency and wavelength to the energy of different types of electromagnetic waves and mechanical waves.
c. Compare and contrast the characteristics of electromagnetic and mechanical (sound) waves.
d. Investigate the phenomena of reflection, refraction, interference, and diffraction.
e. Relate the speed of sound to different mediums.
f. Explain the Doppler Effect in terms of everyday interactions.

SPS10. Students will investigate the properties of electricity and magnetism.

a. Investigate static electricity in terms of
 - friction
 - induction
 - conduction
b. Explain the flow of electrons in terms of
 - alternating and direct current.
 - the relationship among voltage, resistance and current.
 - simple series and parallel circuits.
c. Investigate applications of magnetism and/or its relationship to the movement of electrical charge as it relates to
 - electromagnets
 - simple motors
 - permanent magnets