Count the Quilt Blocks

Paul and Tom were working on predicting the number of quilt blocks (unit squares) in the following pattern:

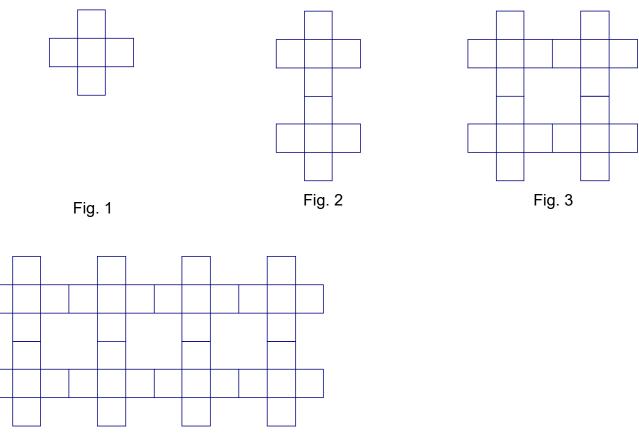


Fig. 4

1. Use the above figures, complete the following table:

Figure Number	1	2	3	4	5	6	7
Number of Unit Squares	5						

2. Is the relation between the "Figure Number" and the "Number of Unit Squares" a function? Why or Why not?

- 3. Write the first seven terms of the sequence for the number of unit squares.
- 4. What kind of sequence is this? Justify your reasoning.
- 5. If a_1 denotes the first term of the sequence and r represents the common ratio, then find the values of a_1 and r.
- 6. Write the "**Recursive Formula**" to find the n^{th} term a_n for this sequence.

Fig No.	(n)	1	2	3	4	5	6	7
No. of unit								
squares	(a _n)	5						
No. of unit								
squares	(a _n)							
(in factored for	orm							
& use prime		5*1						
factors								
No. of unit								
squares	(a _n)							
(in exponentia	al							
form in terms	of							
the common r	ratio)							

7. Complete the following table:

Observe the conversation between Paul and Tom:

Paul: This one works a lot like the last quilt pattern to me. The only difference is that the pattern is doubling, so I knew it was exponential. I thought that it starts with 5 blocks and doubles, so the nth term of the sequence is $a_n = 5(2)^n$

Tom: I don't know about that. I agree that it is an exponential function—just look at that growth pattern. However, I used the numbers in the table and got $a_n = 5(2)^{n-1}$.

- 8. What is different about the process that Paul and Tom used to come to create their equations?
- 9. Who is right? Why? Write the correct **explicit formula** to find the nth term a_n of the geometric sequence.

10. Use the above explicit formula, find the number of unit squares in Fig. 8, Fig.12, and Fig.15?

Number of squares in Fig.8, a₈=_____

Number of squares in Fig.12, a₁₂ = _____

Number of squares in Fig.15, a15= _____

11. Which figure will have 327,680 unit squares? Explain your reasoning.

12. Complete the following table and graph the sequence:

Figure Number (n)	1	2	3	4	5	6	7	8
Number of unit squares (a _n)								

······ 6 40-											
6 00-											
						•	•				
					[]				 		
480-				 	 				 		
440-							•				
400						b	b	\$ 			
						•	•				
						•			 		
240											
					<u> </u>						
80-											
40											
	1	2	2	3		\$ (7	\$ 9 1	0 1	1
	l	i	1 1	4	1 1	I	1	1	I	I	1

13. Should we connect the points on the graph? Explain your reasoning.

14.	Use technology, derive the exponential function f(x) for this sequence.
15.	What can you conclude about the recursive formula, explicit formula, and the function form of this geometric sequence?
16.	Write a real life example for a geometric sequence and express it as an exponential function.

Practice problems:

17. http://www.regentsprep.org/Regents/math/ALGEBRA/AE7/ExpDecayP.htm