Microbial Growth

Paul and Tom observed the growth of a special kind of microbe which was growing in the following pattern every minute.

At one minute

At two
minutes

At three minutes

At four minutes

1. Complete the following table.

Minutes	1	2	3	4	5			
Number of Microbes								

2. Is the relation between the "Minutes" and the "Number of Microbes" a function? Why or Why not?
\qquad
3. Write the first eight terms of the sequence for the number of microbes.
4. What kind of sequence is this? Justify your reasoning.
5. If a_{1} denotes the first term of the sequence and d represents the common difference, then find the values of a_{1} and d.
6. Write the "Recursive Formula" to find the $\mathrm{n}^{\text {th }}$ term a_{n} for this sequence.

Observe the conversation between Paul and Tom:

Paul: This pattern is constantly increasing by 4, so I know it is linear. It starts with 5 microbes and increases by 4 every minute, so the nth term of the sequence is $a_{n}=5+4 n$

Tom: I don't know about that. I agree that it is a linear function-just look at that growth pattern. However, I used the numbers in the table and got $a_{n}=5+4(n-1)$
7. What is different about the process that Paul and Tom used to create their equations?
\qquad
8. Who is right? Why? Write the correct explicit formula to find the $\mathrm{n}^{\text {th }}$ term a_{n} of this arithmetic sequence.
\qquad
\qquad
9. Use the above explicit formula to find the number of microbes at 10 minutes, 17 minutes, and at 40 minutes.

Number of microbes at 10 minutes, $\mathrm{a}_{10}=$ \qquad

Number of microbes at 17 minutes, $\mathrm{a}_{17}=$ \qquad

Number of microbes at 40 minutes, $a_{40}=$ \qquad
10. At how many minutes there would be 173 microbes? Explain your reasoning.
11. Complete the following table and graph the sequence.

Minutes	1	2	3	4	5		
No. of microbes							

12. Should we connect the points on the graph? Explain your reasoning.
13. Use technology, derive the linear function $f(x)$ for this sequence.
14. What can you conclude about the recursive formula, explicit formula, and the function form of this arithmetic sequence?
\qquad
\qquad
15. Write a real-life example of an arithmetic sequence. Express it as a linear function.
\qquad
\qquad
\qquad
\qquad
