

Physical Science Frameworks Curriculum Guide Introduction

Crosscutting Concepts: Energy & Matter; Patterns; Systems & System Models; Structure & Function; Scale, Proportion, & Quantity; Cause & Effect

Topics: Types of energy; Changes in energy types

1-week Instructional Segment

Anchoring Phenomenon	GSE	Sample Lessons	Disciplinary Core Ideas	Science and Engineering	Instructional Notes
				Practices	
Overall-	All	Introductory Unit-	By the end of grade 12	Asking questions	It is important for students
Cars and rockets	SPS7a		Formative assessment unit- NA		to keep a journal to use as
require chemicals		Energy and the	In this short introduction unit	Obtaining, evaluating	a reference throughout the
in constructing and		Cross-cutting	teachers will elicit questions from	and communicating	course. The culminating
in running. They		Concepts	students that will recur throughout	Information	instructional segment will
require physics		How does a car or	the year as the students add to their		use information gained
principles to move,		rocket work?	knowledge about physical science.	Planning and	throughout the year.
and they cause				carrying out	
waves through their			National Research Council. (2012).	investigations	Safety
motion.			A Framework for K-12 Science		Use proper safety
			Education: Practices, Crosscutting	Developing and using	precautions if you plan to
			Concepts, and Core Ideas	models	use model rockets or other
					materials in your
					classroom.
					By the end of this unit,
					students are using the
					following language in their
					speaking and writing
					during EXPLAIN or
					ELABORATE.
					Patterns
					Energy
					• Models

		• Systems
		Proportion
		Quantity
		• Cause
		• Effect
		Structure
		Function

This instructional segment will connect to all other instructional segments throughout the year. The guiding standard (SPS7a) on energy transformation is key to all other units as energy is transformed in atoms through nuclear reactions, in the creation and breaking of bonds, in electricity generation and use, during motion from potential to kinetic energy, and in waves. The purpose of this unit is to give students a true "anchor" for all of physical science.

In instructional segment 2- Structure and Function of Matter, discuss properties of the elements and compounds used to build cars and/or rockets. In instructional segment 3- Stability and Change in Reactions, point out the chemical reactions in rockets and cars (combustion and others). In instructional segment 3- Energy and Matter, discuss rockets powered by nuclear energy or ones used to deliver nuclear weapons or about the potential uses for nuclear energy to power cars (generally through electricity production delivered to electric cars). In instructional segment 4- Cause and Effect in Force and Motion, the movement of a car and/or rocket is used as a model to explore velocity, acceleration, and other concepts. In instructional segment 6- Patterns in Waves, the Doppler effect that occurs when a car passes by or the sonic boom a rocket makes is used to help students explain these concepts. Finally, in instructional segment 7- Energy Capstone, students can use all of the physical science concepts they learned throughout the year to create model rockets and cars that are powered by simple chemical reactions and explain how a car and/or a rocket works. When students can see the patterns and connections within these units, they will certainly have mastered the physical science standards.