Exam Preparation for Sciemce and Sccial Sudices Program

June 8 through June 19

$$
\stackrel{2009}{\text { TEACHER }}
$$

Monday, June 15		
Objective Domain: Ecology - Students evaluate relationships between organisms, populations, communities, ecosystems, and biomes		
Time	Activity/Task	Assessment
15 min	Opening/Pre-Assessment Activity-Organization Levels The teacher begins the lesson with an activity on organization levels using cards that the students organize (see relationship cards in Monday's June 15 , materials section). Put students in pairs. Give each pair a baggie of cards. Tell students to organize the cards in some way and be able to explain how they are organized. After all groups have completed the task, number each student in each pair a 1 or a 2 . 2 s stay seated and 1 s visit three other tables to review and discuss. No one makes any changes!! 1's return to their seats and 2's visit three other groups to review and discuss. Everyone returns to their seats Teacher note: Use the suggested guiding questions to guide the discussion (see Suggested Guiding Questions handout in Monday's June 15, materials section). After each question is discussed, ask the students to write their own answer to the question. Place the large organization signs somewhere in the classroom where students can see them and keep them there until Thursday.	Participation in the discussion. Completion of the Suggested Guiding Questions handout
$\begin{gathered} 15 \\ \text { minutes } \end{gathered}$	Word Splash Activity Now that the students have reviewed the levels of organization, the teacher will review other key terms related to ecological relationships through the use of a word splash. The teacher will write terms on the board and students will respond on paper by completing the Ecological Relationships graphic organizer (see word splash activity in Monday's June 15, materials section).	Completion of the Ecological Relationships graphic organizer
$\begin{gathered} 25 \\ \text { minutes } \end{gathered}$	Relationships video clips Students will watch three video segments from United Streaming on relationships of populations. - Relationships between populations: Competition - Relationships between populations: Predator-Prey - Relationships between populations: Symbiotic As they watch they will complete an interactive note-taking chart (see Relationships Between Populations handout in the Monday's June 15 materials section). At the conclusion of the video segments the teacher will go over the notetaking chart with the students to make sure they have the correct information. The students will use this chart for the next part of the lesson	Students completing notes

Monday, June 15 (continuation)		
Time	Activity/Task	Assessment
20	Paired Activity- Ecosystem Relationships Manipulative Cards Using their notes from the previous activity as a reference, students will match the relationship description in each picture to the type of relationship described and lay the cards next to each other. (See Ecosystems Relationships Cards in the Monday's June 15 materials mection). The teacher will circulate among the students and will ask questions about their work to determine level of understanding. After students have completed their work the teacher should summarize with students the importance the relationships within the ecosystem.	Students matching cards correctly
	Review Questions 9 Provide students with a set of questions (see Review Questions 9 handout in the Monday's June 15, materials section) about the organisms, populations, communities, ecosystems, and biomes. Give them 15 minutes to answer the questions individually. Conduct a group discussion of the answer to the questions and ask the students to correct their own answer if necessary and to write an explanation of why the answer needed to be corrected. The explanation must state the original reason the student chose the wrong answer and what makes the correct answer correct.	Student questionnaire
15 min	Closing Students will answer the following question and will submit it to the teacher: \bullet Which relationship do you think is the most beneficial for populations in an ecosystem and why?	Student responses to question

Monday, June 15 (continuation)		
Objective Domain: Forces, Waves, and Electricity - Analyzes relationships between force, mass, and motion by applying the calculations of velocity and acceleration.		
Time	Activity/Task	Assessment
20 min	Pre-Assessment As the students walk in, provide them with the pre-assessment handout and ask them to answer all the questions. Tell the students that what it is important is to write their ideas and not if their ideas are right or wrong. After about 10 minutes, ask the students to stop writing and proceed to have a group discussion on each question.	Completion of the preassessment handout
15 min	Force, Mass, and Acceleration Group the students in small groups. Provide each group with markers and a large sheet of paper. Instruct each group to copy the concept maps for force, mass, and acceleration from their respective handouts (see concept maps for force, mass and acceleration in the Monday's June 15 materials section) and complete them on their large sheet of paper. Each group should post their concept maps on a wall in the classroom. Students should perform a gallery walk and review other group's posters. During the walk students will note additional ideas presented by other groups in their notebooks. Once the gallery walk is complete, the student should modify or expand their concept maps on their handouts for force, mass and acceleration.	Completion of the concept maps
40 min	Velocity and Acceleration Follow the instructions for the laboratory Students in Motion (see Student in Motion laboratory in the Monday's June 15 materials section)	Lab report
20 min	Lab Reflection Hand the students the post-assessment handout (see Post-Assessment handout in the Monday's June 15 materials section) and ask them to answer all the questions the best that they can. After about 10 or so minutes, ask the students to stop working and discuss each question. Instruct the students to correct their answers if necessary.	
20 min	Review Questions 10 Provide students with a set of questions (see Review Questions 10 handout in the Monday's June 15, materials section) about force, mass, and motion. Give them 15 minutes to answer the questions individually. Conduct a group discussion of the answer to the questions and ask the students to correct their own answer if necessary and to write an explanation of why the answer needed to be corrected. The explanation must state the original reason the student chose the wrong answer and what makes the correct answer correct.	Student responses to question

Organization Signs

	Organization Guiding Questions	
What similarities did groups have in the arrangement of their cards?		

Ecological Relationships graphic organizer

Concept	What I know	What I learn
Predation		
Predator		
Prey		
Symbiosis		
Parasitism		
Commensalism		

Relationships Between Populations Videos

Describe three examples of how prey protect themselves against predators.	

Ecosystem Relationships Manipulative Cards

Ecosystem Relationships Manipulative Cards

| |
| :--- | :--- | :--- |
| The Cattle Egret (Bubulcus ibis) forages in |
| pastures and fields among livestock such as |
| cattle and horses, feeding on the insects stirred |
| up by the movement of the grazing animals. The |
| egrets benefit from the arrangement, but the |
| livestock, generally, do not. |
| Temoves in the attacked nest and lets the |
| unsuspecting bird raise the cuckoos young. |

Ecosystem Relationships Manipulative Cards

Review Questions 9
 Relationships

1. A group of similar ecosystems that share the same climax community is called a
A. Population
B. Community
C. Trophic level
D. Biome
2. The role an organism plays in an ecosystem is called it's
A. Habitat
B. Niche
C. Trophic level
D. Biome
3. The abiotic factor in this list is
A. Bacteria
B. Fungi
C. Water
D. Human
4. The biome that is the most biologically diverse is
A. tropical rain forest
B. Temperate forest
C. Desert
D. Grassland
5. The biome that is dominated by cone bearing trees, and is populated by moose, showshoe hare, and lynx, and has long winters is
A. Tundra
B. Taiga
C. temperate forest
D. Chaparral
6. An intense forest fire burns an entire forest to the ground. Soon wild flowers, grasses, and weeds begin to repopulate the area. This is
A. primary succession
B. secondary succession
C. tertiary succession
D. climax succession
7. An example of a population would be
A. neighborhood cats and dogs
B. all the rocks in your yard
C. all the largemouth bass in a fish pond
D. all the species of trees in the school nature area
8. Major ecosystems that occur over wide areas of land are called
A. Communities
B. Habitats
C. Biomes
D. food chains
9. A relationship between a producer and consumer is best illustrated by
A. a snake eating a bird
B. a fox eating a mouse
C. a lion eating a zebra
D. a zebra eating grass
10. A tick feeding on a human is an example of
A. Parasitism
B. Mutualism
C. Competition
D. Predation
11. An organism's niche includes
A. what it eats
B. where it eats
C. when it eats
D. all of the above
12. An ecologist who studies how several species in an area interact among each other and with the abiotic parts of the environment is interested in the biological organization level called
A. Organism
B. Population
C. Community
D. Ecosystem
13. The relationship between plants and the bees that pollinate them is an example of
A. Commensalisms
B. Competition
C. Mutualism
D. Parasitism
14. Symbiosis involving a fungi and algae is seen in which of the following?
A. Moss
B. lichen
C. mildew
D. bread mold
15. In the study of ecology, what is a population?
A. all plants and animals in a liven place
B. all the living and nonliving things in an environment
C. all the organisms of one particular species in a given place
D. different plants interacting with each other in a given place
16. Which of the following is an abiotic factor in an ocean ecosystem?
A. Coral
B. Whale
C. water
D. shrimp
17. Which of the following best describes a biome?
A. areas of like climate and ecology
B. primary productivity per square kilometer
C. all of the living organisms in an ecosystem
D. areas that include the entire range of an organism

Pre-Assessment

Name:
Date:
Instructions: This assessment is designed to guide the lessons that we are going to study in this unit. Please answer all the questions the best that you can.

1. A mass resting on a table is attached to a compressed spring. Describe all the forces acting on the mass while in contact with the spring and after the mass has been push away from the spring.
2. Why do objects start or stop moving?
3. There are two objects: one with small mass but large volume and one with large mass but small volume. Explain which object will have a greater acceleration if each object is pushed by the same force.
4. How does friction affect the motion of objects?
5. Describe the motion of a spaceship propelled forward by a constant force F for 20 minutes. The force suddenly stops after 20 minutes. Describe the motion of the spaceship after the force F stops.
6. How are weight and mass related?

Students in Motion: A Graphical Representation

Theory:

Drawing graphs is a very useful means of presenting information and making it easily understood. A further advantage of using graphs is that changes and patterns can be quickly recognized. The motion of an object is regularly represented with graphs. Graphs provide information about what is being represented on each axis. The type of curve and its slope provide additional information about the relationship between those two variables.

This laboratory will provide us with an understanding on how to draw and read graphs of position vs. time, velocity vs. time, and acceleration vs. time. Information about the motion of an object can also be obtained from the slope of the line in the graph. The slope of the line obtained when the position of an object is plotted against time represents the velocity with which the object is moving. The shape of the line when position of an object is plotted against time gives us information about the velocity of the object. In the case of a velocity vs. time graph, the slope of the line obtained when plotting the velocity of an object against time represents its acceleration. The shape of the line when velocity of an object is plotted against time gives us information about the acceleration of an object.

It is important to remember that motion is a change in position of an object measured by distance and time. Velocity tells the speed and direction of motion, whereas speed tells us the rate at which an object moves. Finally, the acceleration of an object tells us the rate at which the velocity, speed and/or direction, changes. The slope of a line gives us information about the magnitude of the rate of change, the steeper the slope the higher the rate of change and vice versa.

Research Question: How does the shape of the graph representing the relationship between displacement vs. time, velocity vs. time, and acceleration vs. time offer information about the motion of an object?

Materials:

Graph paper
Calculator
Clipboards

> Timers
> Meter Sticks or Trundle Wheels
> Computers (not essential)

Procedure:

1. Organize the students such that there are enough timers to have two times for each data point (see Figure 1). Make sure that all the students have a copy of the data sheet form (see the data collection section of this laboratory) and a clipboard.
2. Measure 100 meters (if possible conduct this activity on the schools track) and place two students with timers every 10 meters.
3. Some students volunteers need to perform one of the following activities (each activity needs a volunteer):
a. Walking at a uniform pace
b. Walking faster and faster
c. Running at a constant rate
d. Sprinting
e. Oscillating (moving back and forth). In this case the student should start in the middle (the 50 meter mark) and move back and forth. It is not necessary for the student to reach the starting and finishing line every time.
f. A combination of some or all of the previous motions.

4. The timers need to agree in a signal that all timers can see, and use it to indicate when all the timers will to start their timers.
5. The first student will walk from the starting line (0 meters) to the finish line (100 meters) at a constant pace. As the student passes in front of each pair of timers, the timers should stop their timer and record the time.
6. Repeat this process for each type of motion described on step 3.
7. Students need to share their information. In general the two times for each distance will be very close. If not they are not close, use personal judgment to either accept one or the other, take an average or disregard both times. (Note: I have found that the best way to do this is to have everybody back in the classroom and fill out a blank data sheet placed on an overhead projector or, if available, filling a spreadsheet and then printing enough copies for the whole class).

Data Collection:

(See following pages)

Data Calculations

1. Draw a distance vs. time graph for each type of motion studied on this lab. Use a separate sheet of graph paper for each one.
2. Select two of the types of motion and calculate the velocity of the walking/running student on each 10 meter interval. Record answers on the Velocity Data Sheet. Calculate the average speed for each interval using the expression

$$
\langle v\rangle=\frac{v_{f}+v_{i}}{2}=\frac{d}{t}
$$

Where v_{f} is the final velocity, v_{i} is the initial velocity, d is the distance travel (10 meters in our case), \boldsymbol{t} is the time that it took for the student to cover the distance d, and $\langle v\rangle$ is the average speed.

Analysis

1. Identify regions that represent one of the two types of motion analyzed in part two of the calculations on each distance vs. time graphs (See example below).

A \rightarrow Alf was standing still at 3 m of the detector for 3 seconds.
$\mathrm{B} \rightarrow$ Alf was moving for 3 seconds with constant speed towards the detector
C \rightarrow Alf was standing still next to the detector for 3 second.
$\mathrm{D} \rightarrow$ Alf was moving away from the detector for 4 seconds with constant speed.
$\mathrm{E} \rightarrow$ Alf was standing still for 3 seconds at 6 m of the detector.
2. As done for the previous section, identify, on each of velocity vs. time graph, the particular type of acceleration/deceleration (uniform acceleration, not uniform acceleration) taking place.

Timing Data Sheet										
	10 m	20 m	30 m	40 m	50 m	60 m	70 m	80 m	90 m	100 m
Walking at a constant rate										
Walking faster and faster										
Running at a constant rate										
Sprinting										
Oscillating										

Timing Data Sheet (Averages)										
	10 m	20 m	30 m	40 m	50 m	60 m	70 m	80 m	90 m	100 m
Walking at a constant rate										
Walking faster and faster										
Running at a constant rate										
Sprinting										
Oscillating										

Average Velocity Data Sheet										
	10 m	20 m	30 m	40 m	50 m	60 m	70 m	80 m	90 m	100 m
Walking at a constant rate										
Walking faster and faster										
Running at a constant rate										
Sprinting										
Oscillating										

Post-Assessment

Name:
Date:
Instructions: Please answer all the questions the best that you can. Your grade for this assessment is based on the quality of your answers (explanations and thinking) not correctness.

1. Explain the difference between the concepts of speed and velocity. Give an example of a situation in which you would use each one.
2. Explain what is mean by saying that a car is accelerating. What is mean by saying that a car is decelerating?
3. Explain if the following statement is true or false, "if the velocity of an object is zero, its acceleration must be zero"
4. Explain if the following statement is true or false, "heavier objects fall faster than lighter objects"

Review Questions 10
 Force, Mass, Velocity and Acceleration

1. How much force is needed to accelerate a $500.0-\mathrm{kg}$ car at a rate of $4.000 \mathrm{~m} / \mathrm{s} / \mathrm{s}$?
A. 125.0 N
B. $2,000 . \mathrm{N}$
C. 250.0 N
D. 4,000 . N
2. Two equal forces act at the same time on the same stationary object but in opposite directions. Which statement describes the object's motion?
A. It remains stationary.
B. It accelerates.
C. It moves at a constant speed.
D. It decelerates.
3. A $100-\mathrm{N}$ force causes an object to accelerate at $2 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. What is the mass of the object?
A. 0.02 kg
B. 102 kg
C. 50 kg
D. 200 kg
4. A chair exerts a force of 20 N on a floor. What is the force that the floor exerts on the chair?
A. 10 N
B. 21 N
C. 20 N
D. 40 N
5. Carts A and B have the same mass. Both students have a mass of 80 kg .

If the student in cart A pulls the rope, what will result?
A. Cart A will move toward a stationary Cart B.
B. Cart B will move toward a stationary Cart A.
C. Both carts will move toward each other.
D. Cart B will move faster than Cart A.
6. A student in a boat decided to go for a swim. He dove off the back of the boat, as shown in the diagram. The boat moved in the direction shown by the arrow.

Which statement best explains why the boat moved in the direction shown?
A. A body in motion tends to remain in motion.
B. The acceleration of a body is directly proportional to the force applied.
C. For every action there is an equal and opposite reaction.
D. Friction on the bottom of the boat was reduced because of the lake water.
7. A car's velocity changes from $0 \mathrm{~m} / \mathrm{s}$ to 40 m / s in 5 seconds. What is the average acceleration of the car?
A. $5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
B. $35 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
C. $8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
D. $200 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
8. A rocket sled accelerates from $10 \mathrm{~m} / \mathrm{sec}$ to $60 \mathrm{~m} / \mathrm{sec}$ in 2 seconds. What is the acceleration of the sled?
A. $10 \mathrm{~m} / \mathrm{sec}^{2}$
B. $25 \mathrm{~m} / \mathrm{sec}^{2}$
C. $40 \mathrm{~m} / \mathrm{sec}^{2}$
D. $20 \mathrm{~m} / \mathrm{sec}^{2}$
9. John Force, a drag racer, starts from a stopped position he reaches a speed of 140 $\mathrm{m} / \mathrm{sec}$ in 7 seconds. What is his acceleration?
A. $147 \mathrm{~m} / \mathrm{sec}^{2}$
B. $200 \mathrm{~m} / \mathrm{sec}^{2}$
C. $0.5 \mathrm{~m} / \mathrm{sec}^{2}$
D. $20 \mathrm{~m} / \mathrm{sec}^{2}$
10. A rocket can fly into space because
A. when it is launched, the hot exhaust gases hit the ground and push the rocket forward.
B. the rocket pushes the exhaust gases backward, and there is an equal and opposite reaction pushing the rocket forward.
C. when the gases are burning up, the mass of the rocket decreases, changing the amount of gravity on the rocket.
D. the launch pad pushes the rocket forward like a slingshot.
11. Use the graph to predict the speed of the car when the car is at 60 cm .

A. $220 \mathrm{~cm} / \mathrm{sec}$
B. $230 \mathrm{~cm} / \mathrm{sec}$
C. $240 \mathrm{~cm} / \mathrm{sec}$
D. $250 \mathrm{~cm} / \mathrm{sec}$
12. Calculate the speed of the object from the position vs. time graph shown below.

A. $0.5 \mathrm{~m} / \mathrm{sec}$
B. $0.75 \mathrm{~m} / \mathrm{sec}$
C. $2 \mathrm{~m} / \mathrm{sec}$
D. $3 \mathrm{~m} / \mathrm{sec}$
13. At which of the following points on the graph is the speed the greatest?

A. Point 1
B. Point 2
C. Point 3
D. Point 4
14. Compared to your weight and mass on Earth, if you were on the moon
A. your weight and mass would be less.
B. your weight would be less but your mass would remain the same.
C. your weight would remain the same, but your mass would be less.
D. your weight would increase, but your mass would remain the same.
15. A car passed a truck on the road. The car accelerates from 20 meters/second to 24 meters/second in 2 seconds. What was the car's acceleration?
A. 2 meters/second/second
B. 4 meters/second/second
C. 12 meters/second/second
D. 22 meters/second/second
16. The displacement-time graph below represents the motion of a cart along a straight line. During which interval is the cart NOT moving at constant speed?

A. AB
B. BC
C. CD
D. DE
17. A vehicle travels a distance of 160 km in 5 hours. The average speed is
A. $32 \mathrm{~km} / \mathrm{hr}$
B. $40 \mathrm{~km} / \mathrm{hr}$
C. $80 \mathrm{~km} / \mathrm{hr}$
D. $165 \mathrm{~km} / \mathrm{hr}$

