Thursday, June 18

Objective

Domain: Ecology

• Students use diagrams to interpret the interactions of organisms within food chains and webs.

• Students determining the role of different organisms in food chains and webs.

Time	Activity/Task	Assessment
	Guiding Questions Preassessment	Answer guiding
10 min	Ask students to answer the guiding questions on Interactions of	questions.
	Organisms within food chains and webs. (See Guiding	Participation in
	Questions in the Thursday's 18, materials section).	classroom
	Teacher notes: conduct a short discussion around the questions	discussion
	as a manner to introduce the students to today's lesson.	
	Organisms and their roles within food chains and webs	Video
	The teacher shows the Organisms in their environment video clip	information
	from United Streaming. Students should complete the	sheet
15 min	Organisms in their environment video information sheet. (See	
13 11111	Organisms in their environment video information sheet in the	
	Thursday's 18, materials section).	
	Teacher notes: Students do not need to watch the last two	
	segments of the video; the carbon cycle and the quiz.	
	Card Activity	Constructed
	The instructor passes out a set of index cards with roles and	definitions.
	pictures. Students in groups of two arrange the roles and pictures	
15 min	as a pre-assessment probe. (See Organisms Matching cards in	
	the Thursday's 18, materials section).	
	The teacher asks the students to generate definitions for the	
	terms used in the pre-assessment. (See Key Concept Definitions	
	handout in the Thursday's 18, materials section).	NT . 1 1
	Generating a Food Chain	Notebook
	Divide the students in groups of two. Provide each group with a	reflections.
20 min	packet food chain manipulatives with descriptor role terms with	
	directions and threat scenarios. (See food chain manipulatives in	
	the Thursday's 18, materials section).	
	Student groups arrange the species into a food chain. Students	
	select threat cards and describe in their notebooks what will	
	happen to organisms in the food chain due to the threat card	
	event.	

Thursday, June 18 (continuation)				
Time	Activity/Task	Assessment		
	Food Web Construction, question generation and discussion Use the organisms in the baggie to construct a food web (see organisms manipulatives in the Thursday's 18, materials section). This is an open ended activity. Students place the organisms on the poster and use a dry erase marker to draw arrows between the organisms, indicating their relationships. Each students group creates a scenario (disruption threat or question and writes it on their whiteboard) other groups circulate and respond to the question created by the group who created the food web.	Students construct a food web. Students generate and answer questions on interactions and changes in the webs.		
30 min				
	Teacher notes: This activity is designed to draw in and review information on ecology presented on Monday and Tuesday relationships between organisms, populations, communities, ecosystems, and biomes as well as matter and energy as they move through food chains and food webs. Class discusses the webs, questions and responses.			
20 min	Review Questions 14 Provide students with a set of questions (see Review Questions 14 handout in the Wednesday's June 17, materials section) about the interaction of organisms within food chains and webs. Give them 15 minutes to answer the questions individually. Conduct a group discussion of the answer to the questions and ask the students to correct their own answer if necessary and to write an explanation of why the answer needed to be corrected. The explanation must state the original reason the student chose the wrong answer and what makes the correct answer correct.	Student questionnaire		

Thursday, June 18 (continuation)

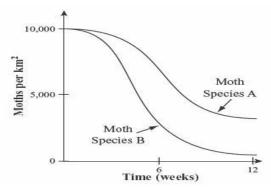
Objective

Domain: Forces, Waves and Electricity

• Students understand the properties of electricity and magnetism

Time	Activity/Task	Assessment
	Guiding Questions – Electricity and Magnetism Assessment Probe and Task Challenge	Students complete
	Students complete an introductory assessment probe. (See Electricity	assessment
15	and Magnetism Assessment Probe in the Thursday's 18, materials	probe and build
15 min	section).	a circuit.
	Teacher and students then discuss responses. The teacher challenges class to make suggestions on how to turn on the light bulb (making a complete circuit) with one battery, ONE wire, and one bulb.	
	Series and Parallel Circuit Activity	Completion of
30 min	Follow the instructions given on the Series and Parallel Circuits Activity (see Series and Parallel Circuit Activity in the Thursday's 18, materials section) in groups of three.	the activity
	Ask the students to write a two paragraph conclusion about the things	
	that they learned in their notebooks.	G. 1
	Electricity Board Activity	Students
	Students review concepts in electricity by placing card terms in a concept map (see Electricity Concept Board Activity in the Thursday's	complete the Concept Maps
	18, materials section). Instruct the students to take the words out of	Concept Maps
	the plastic bag and placed them on the correct place in the concept	
	maps.	
20 min	Teacher and student discuss maps completed to clear up any	
	misconceptions before the students tackle the problem set in the next	
	activity.	
	Teacher notes: The concept maps need to be put together before	
	issuing them to the students. Follow the directions at the top of each	
	concept map page.	
	Electromagnets	Completion of
20 min	Show the Unitedstreaming video Electromagnets. Ask the students to	Electromagnets
	complete the Electromagnet video handout and conduct a group	video handout
	discussion about what the students have watch.	- · · · ·
20 min	Making an Electromagnet	Description of
	Group the students in groups of three or four and challenge them to	experiment
	use materials in the lab to design an electromagnet that will pick up	results.
	paper clips. Students describe how they build their electromagnet and how it	
	works.	
	WOIRS.	

	Thursday, June 18 (continuation)			
Time	Activity/Task	Assessment		
20 min	Review Questions 15 Provide students with a set of questions (see Review Questions 15 handout in the Wednesday's June 17, materials section) about electricity and magnetism. Give them 15 minutes to answer the questions individually. Conduct a group discussion of the answer to the questions and ask the students to correct their own answer if necessary and to write an explanation of why the answer needed to be corrected. The explanation must state the original reason the student chose the wrong answer and what makes the correct answer correct.	Student questionnaire		


Thursday's June 18

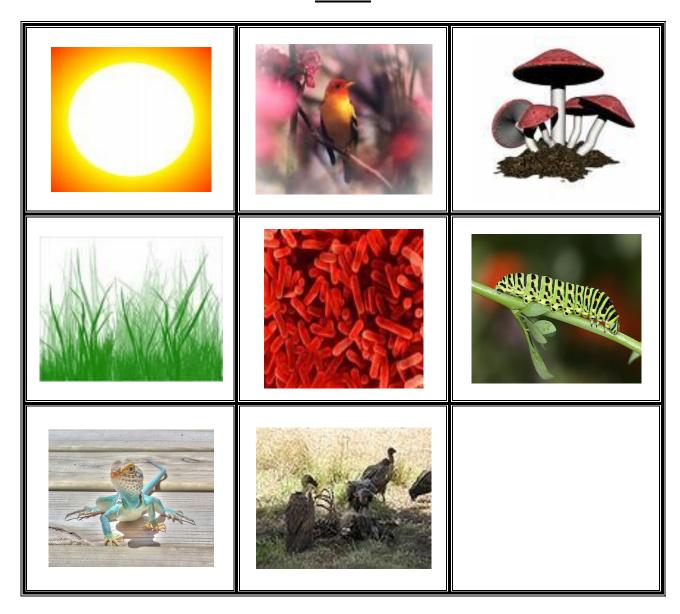
Materials Section

Guiding Questions The role of organisms within food chains and webs

What is an example of ecological succession?

The praying mantis is a predatory insect that often eats moths. The graph below shows the relative numbers of two species of moths over 12 weeks after the introduction of the predatory praying mantis.

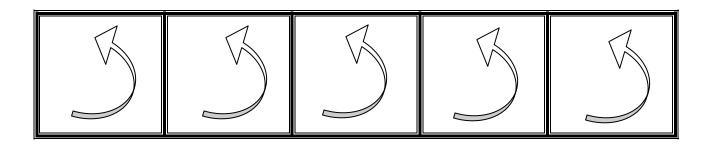
What characteristic of this ecosystem is **best** indicated from this graph?


Organisms in their Environment Video Notes		
What are ecosystems?		
What factors help define the characteristics of a particular ecosystem?		
What is a population?		
What is a niche?		
What are species?		
What is a habitat?		
What are food chains?		
What are food webs?		

Organisms in their Environment			
	Video Notes		
What are food producers?			
What are the first order consumers?			
What are the second order consumers?			
What are decomposers?			
What is a pyramid of energy?			
How much energy passes from one level to the next?			

Organisms Matching Cards <u>Terms</u>

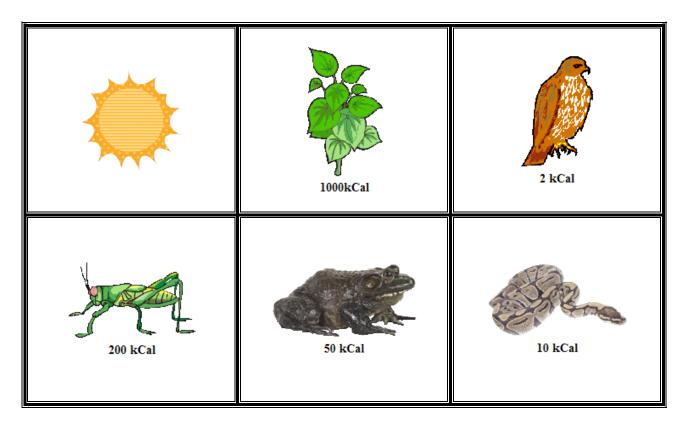
HETROTROPH	AUTOTROPH	PRODUCER
PREY	PREDATOR	CARNIVORE
HERBIVORE	OMNIVORE	Primary (1 ST ORDER) CONSUMER
Secondary (2 ND ORDER) CONSUMER	3 RD ORDER CONSUMER	Top Level Consumer
SUN	SCAVENGER	DECOMPOSER


Organisms Matching Cards <u>Pictures</u>

Food Chain Activity

Instructions:

- 1. Place the organisms in the correct order of the terrestrial food chain.
- 2. Lay the proper term beside each organism that defines its role in the food chain.
- 3. Use the arrows and "gives energy to" signs to indicate the direction of energy flow.
- 4. Use your threat scenario cards in the lower half of you whiteboard poster. Explain what you think would happen to the food chain after the event on the threat card occurs at the bottom of your white board using the dry erase marker.



Gives energy to	Terrestrial Food Chain			
Gives	Gives	Gives	Gives	Energy
energy to	energy to	energy to	energy to	Source

Food Chain Manipulatives (Continuation)

HETEROTROPH	HETEROTROPH	HETEROTROPH
HETROTROPH	AUTOTROPH	PRODUCER
PREY	PREDATOR	CARNIVORE
CARNIVORE	PREDATOR	HERBIVORE
CARNIVORE	OMNIVORE	Primary (1 ST ORDER) CONSUMER
Secondary (2 ND ORDER) CONSUMER	3 RD ORDER CONSUMER	Top Level Carnivore (4 TH ORDER) CONSUMER
SUN	PREY	PREDATOR

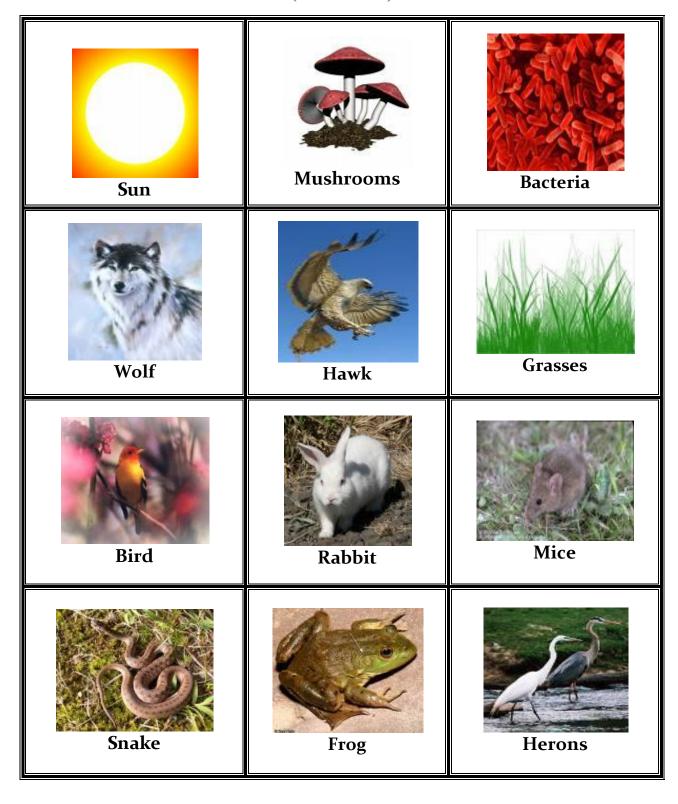
Food Chain Manipulatives (Continuation)

Card for students who are not familiar with ecosystems in Georgia or who show confusion as they attempt this activity:

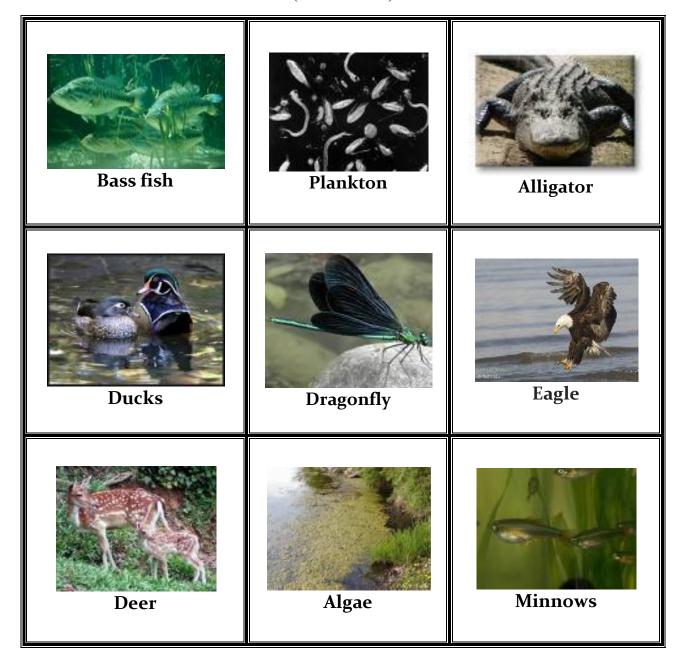
In a sunny field containing a small pond in Georgia, organisms cycle nutrients and pass energy in one direction through a food chain. In this ecosystem, grasshoppers love to eat the leafy plants surrounding the pond but must watch out for hungry frogs. The frogs are the favorite food of the snakes which are careful to hide their movements from the hawks that use them as a primary food source.

Food Chain Manipulatives (Continuation)

Threat scenarios

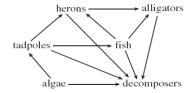

A drought kills the plants in the area	A farmer sprays a pesticide on the plant that is stored in its leaves at a small concentration.
A drought kills the plants in the area	A farmer sprays a pesticide on the plant that is stored in its leaves at a small concentration.
A drought kills the plants in the area	A farmer sprays a pesticide on the plant that is stored in its leaves at a small concentration.
A drought kills the plants in the area	A farmer sprays a pesticide on the plant that is stored in its leaves at a small concentration.
A drought kills the plants in the area	A farmer sprays a pesticide on the plant that is stored in its leaves at a small concentration.
A drought kills the plants in the area	A farmer sprays a pesticide on the plant that is stored in its leaves at a small concentration.

Food Web Manipulatives


Directions:

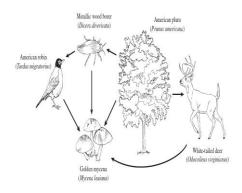
- 1. All of these organisms make up the community of a portion of Georgia's Okefenokee swamp. Use the organisms in your baggie to construct a possible food web for the Okefenokee. Use an Expo marker to show the movement of matter and energy from one organism to another.
- 2. Create a question to ask other student groups about your food web. Write that question at the end of your white board. You pose a question about a possible disruption threat or about the relationships between organisms, populations, communities, ecosystems, and biomes you have reviewed earlier in the week. Be creative!!!
- 3. Once you have completed your web and written the question you are asking about your web and the bottom of your whiteboard, circulate with the other members of your group and respond to the questions created by other groups using the dry erase markers. Make sure to include the names of your group members with the responses you make to the other groups' food webs.

Food Web Manipulatives (Continuation)



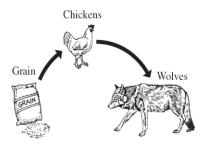
Food Web Manipulatives (Continuation)

Review Questions 14 Organisms' Interactions within Food Chains and Webs


1. The diagram below shows a food web.

Which population would **probably** increase if the tadpole population decreased?

- A. herons
- B. alligators
- C. fish
- D. algae


2. A food web is shown below.

Which organism in this food web is a decomposer?

- A. American plum
- B. Golden mycena
- C. Metallic wood borer
- D. White-tailed deer

3. The figure below represents the flow of food energy through a system.

In an experiment, chickens were fed grain that contained a chemical marker in its protein.

The presence of the marker can be detected in

The presence of the marker can be detected in organisms.

Which of the following is the **MOST** reasonable prediction from this experiment?

- A. The marker will only be found in the grain.
- B. Both chickens and wolves will have the marker.
- C. Wolves will have the marker, but chickens will not.
- D. The marker will only be found in the animal's wastes.
- 4. Plants → Aphids → Spiders → Sparrows In this food chain, the spiders are
 - A. Hawks
 - B. Weasels
 - C. Raccoons
 - D. Mice

- 5. Many species of beetles, fungi and bacteria feed exclusively on dead plants and animals in the tropical rainforest biome so that the nutrients are very rapidly recycled in the biome. These organisms would be considered:
 - A. Producers
 - B. Carnivores
 - C. Herbivores
 - D. Decomposers
- 6. Major ecosystems that occur over wide areas of land are called
 - A. Communities
 - B. Habitats
 - C. Biomes
 - D. food chains
- 7. A relationship between a producer and consumer is best illustrated by
 - A. a snake eating a bird
 - B. a fox eating a mouse
 - C. a lion eating a zebra
 - D. a zebra eating grass
- 8. The physical location of an ecosystem in which a given species lives is called a
 - A. habitat
 - B. tropical level
 - C. community
 - D. food zone
- 9. Animals that feed on plants are least in the
 - A. first trophic level
 - B. second trophic level
 - C. third trophic level

- D. fourth trophic level
- 10. An organism's niche includes
 - A. what it eats
 - B. where it eats
 - C. when it eats
 - D. all of the above
- 11. An ecosystem consists of
 - A. a community of organisms
 - B. energy
 - C. the soil, water, and weather
 - D. all of the above
- 12. In the study of ecology, what is a population?
 - A. all plants and animals in a given place
 - B. all the living and nonliving things in an environment
 - C. all the organisms of one particular species in a given place
 - D. different plants interacting with each other in a given place
- 13. Physical and chemical factors may affect an organism's survival. These abiotic factors may include
 - A. infectious parasites
 - B. autotrophs and chemoautotrophs
 - C. pathogens such as fungi and bacteria
 - D. available gases such as O_2 , CO_2 and N_2
 - 14. Replacing inorganic nutrients in soil is accomplished primarily by the
 - A. second-order consumers
 - B. first-order consumers
 - C. decomposers
 - D. herbivores

One of the four fundamental forces, electromagnetic force, operates between charged particles (like protons and electrons) and electromagnetic fields that they create. Like charges repel and unlike charges attract. This basic law of nature results in many phenomena known as "electricity", "magnetism" and "electromagnetism". Listed below are some terms. Check all the ones you think are associated with electricity and magnetism. On right column of the table write a brief explanation outlining how each of the words you checked is associated with things that surround you.

Current		
Direct Current		
Generator		
Electromagnet		
Motor		
Resistance		
Battery		
Series circuit		
Conductor		
Voltage		

Series and Parallel Circuit Activity

Materials

- 1 AA battery
- 5 Christmas tree lights

Wires from the lights cut in different lengths

Directions

1. Construct a series circuit by using three or more tree lights (see figure 1 below).

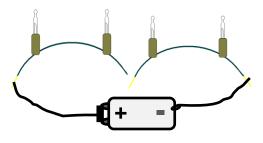


Figure 1

2. Complete the table below with your observations.

	OBSERVATIONS
1	
2	
3	
4	
5	

3. Modify your circuit if necessary to find out the answers to the questions on Table 2.

Inquiry Questions			
Are all the tree lights equally bright?			
What happens when one tree light is removed from the circuit and the remaining stay connected?	Why?		
What happens if one of the lights will burn out?	Why?		

4. Construct a series circuit by using three or more tree lights (see figure 2 below).

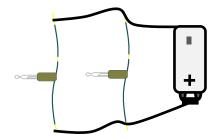
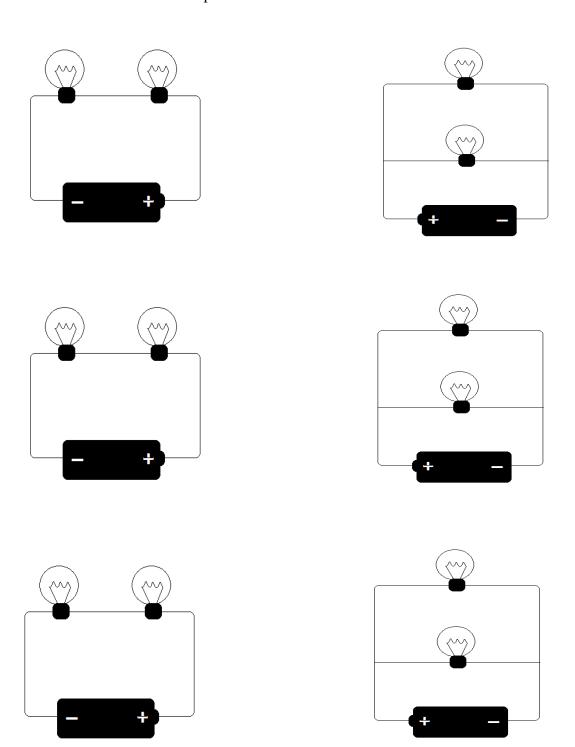


Figure 2

5. Complete the table below with your observations.

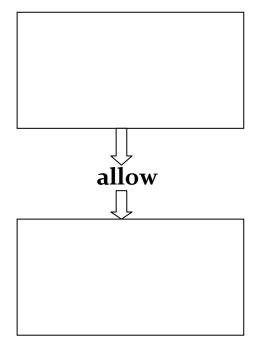

OBSERVATIONS				
1				
2				
3				
4				
5				

6. Modify your circuit if necessary to find out the answers to the questions on Table 2.

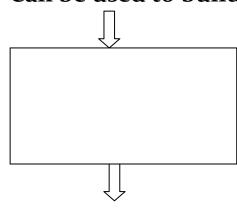
Inquiry Questions			
Are all the tree lights equally bright?			
What happens when one tree light is removed from the circuit and the remaining stay connected?	Why?		
What happens if one of the lights will burn out?	Why?		

QUESTIONS:

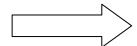
Look at the diagrams of the circuits below. Label each circuit as a series circuit or a parallel circuit. Draw some switches at various places in the circuit and describe what will happen to the flow of current if the switch is opened.

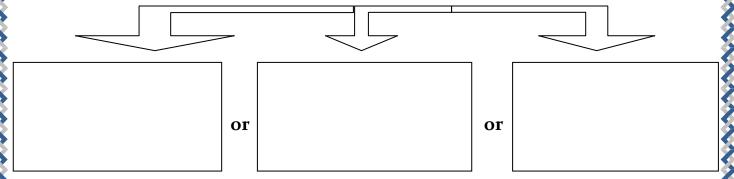


Electricity Concept Map


Flow of charges	The easy flow of charges	Copper & silver
Plastic and rubber	Electrical circuits	Volts
Ohms	Amperes	Resistance to current
Current	Force of charge through conductors	I
V	R	Series Circuits
Parallel Circuits	V=IR	R ₁
2 3 4 		

Some materials are


CONDUCTORS such as


Can be used to build

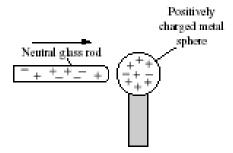
This can be

That can be measured with units called

(bottom right)

which measures	which measures	which measures
	\prod	
~	~	~
who's symbol is	who's symbol is	who's symbol is

(top right ½ page)


And some are INSULATORS such as which prevent

Review Questions 15 Electricity and Magnetism

- 1. If a circuit has a current equal to 10 amps and a resistance equal to 2 ohms, what is the voltage in the circuit?
 - A. 5 volts
 - B. 20 volts
 - C. 0.2 volts
 - D. cannot be determined
- 2. Which of the following statements about circuits is true?
 - A. As you add light bulbs to a parallel circuit, the light bulbs will become less bright as less current flows through each.
 - B. If you stop the flow of current in one branch of a parallel circuit, the entire circuit MUST stop carrying electric current.
 - C. If you stop the flow of current in one part of a series circuit, no current will flow in any part of the circuit.
 - D. All of these statements are true.
- 3. Electric charges are usually transferred by
 - A. electrons
 - B. the nucleus
 - C. protons
 - D. neutrons
- 4. Appliances connected so that they form a single pathway for electricity to flow are connected in a(n)
 - A. a series circuit
 - B. a parallel circuit
 - C. an open circuit
 - D. not enough information

- 5. If a circuit has a voltage of 60 volts and a resistance of 5 ohms, what is the current flowing through the circuit?
 - A. 300 amps
 - B. 1/12 amp
 - C. 12 amps
 - D. 55 amps
- 6. A dry-cell battery produces _____.
 - A. direct current
 - B. alternating current
 - C. both direct and alternating current
 - D. neither a direct current or alternating current
- 7. If you want holiday lights to operate so that when one bulb burns out and the rest stay lit, you will want to get lights that
 - A. are connected in series
 - B. are only white
 - C. are connected in parallel
 - D. have many colors
- 8. A negatively charged rubber rod was brought near some small pieces of paper. The rod's charges repelled the negative charges in the pieces. Which of the following caused the repulsion of the negative charges?
 - A. conduction
 - B. gravitation
 - C. induction
 - D. insulation

9. The figure below shows a neutral glass rod and a positively charged metal sphere.

Which of the following **best** describes the movement of charges as this glass rod touches the sphere?

- A. Negative charges move from the sphere to the glass rod.
- B. Negative charges move from the glass rod to the sphere.
- C. Positive charges move from the sphere to the glass rod.
- D. Positive charges move from the glass rod to the sphere.
- 10. Which of the following is common to all electric motors?
 - A. battery power
 - B. magnetic forces
 - C. hydroelectric power
 - D. internal combustion engines
- 11. In which way do permanent magnets and electromagnets differ?
 - A. Electromagnets have fixed magnetic strength
 - B. Permanent magnets can only be used in fixed positions
 - C. Electromagnets can attract other substances besides metals

- D. The largest permanent magnets are weaker than the largest electromagnets
- 12. An electric generator converts
 - A. solar energy to electric energy
 - B. thermal energy to electric energy
 - C. chemical energy to electric energy
 - D. mechanical energy to electric energy
- 13. A student's hair stands out when the Van de Graff generator charges them. The reason for this is
 - A. hair strands are at a high voltage
 - B. hair is a good conductor
 - C. the student is in a strong electric field
 - D. like charges repel
- 14. Reginald has set up an electromagnet, but it is weak and won't even attract paperclips. How might Reginald make the electromagnet stronger?
 - A. Increase the current
 - B. Increase the number of turns
 - C. Use a soft iron core instead of a nail
 - D. Decrease the amount of wire used
- 15. In which way do permanent magnets and electromagnets differ?
 - A. Electromagnets have fixed magnetic strength
 - B. Permanent magnets can only be used in fixed positions
 - C. Electromagnets can attract other substances besides metals
 - D. The largest permanent magnets are weaker than the largest electromagnets