Georgia High School Graduation Test Science Content

Cells and Heredity

- Evaluates the nature of the relationships between structures and function in living cells by explaining the roles of cell organelles and by analyzing the function of the four major macromolecules.
- Evaluates how biological traits are passed on to successive generations by comparing and contrasting the roles of DNA and RNA.
- Analyze the role of DNA in storing and transmitting cellular information.
- Explains Mendel's laws and the role of meiosis in reproductive variability.
- Investigates the use of DNA technology in forensics, medicine, and agriculture.
- Derives the relationship between single-celled and multi-celled organisms by analyzing the complexity and organization of organisms in their ability for obtaining, transforming, transporting, releasing, and eliminating the matter and energy used to sustain the organisms.

Ecology

- Describes the interdependence of all organisms on one another and evaluates the relationships among organisms, populations, communities, ecosystems, and biomes.
- Analyzes the flow of matter and energy through ecosystems as components of a food chain or food web.

Structure and Properties of Matter

- Analyzes the structure of the atom in terms of proton, electron, and neutron locations as well as atomic mass, atomic number, atoms with different numbers of neutrons and different numbers of protons.
- Explains properties of solutions.

Energy Transformations

- Distinguishes the characteristics and components of radioactivity and explains the process of half-life as related to radioactive decay.
- Analyzes the atomic/molecular motion of solids, liquids, gases and plasmas.
- Identifies and explains energy transformation within a system.
- Investigates and describes molecular motion as it relates to thermal energy changes in conduction, convection, and radiation.
Forces, Waves, and Electricity
- Analyzes relationships between force, mass, and motion by applying the calculations of velocity and acceleration.
- Evaluates the application of Newton's three laws in everyday situations related to inertia explaining falling objects as related to gravitational force.
- Applies mass and weight to appropriate situations.
- Applies the calculations of work and mechanical advantage to complex systems.
- Analyzes the properties of waves by explaining the transfer of light, heat, and sound energy through the application of wave theory.
- Explains the properties of electricity and magnetism by applying and relating these to electromagnets and simple motors.

Instructional Calendar at a Glance

Day	Content
Monday June 14	Domain: Cells and Heredity - Students describe the structures of cells and the structure and function of their components. - Students examine the similarities and differences between prokaryotic and eukaryotic cells.
	Domain: Structure and Properties of Matter - Students describe atoms, understanding the structure of an atom. - Students identify the symbol, atomic number, and atomic mass of the first 20 elements on the periodic table.
Tuesday June 15	Domain: Cells and Heredity - Students explain the process of inheritance of genetic traits. - Students differentiate between DNA and RNA, recognizing the role of each in heredity.
	Domain: Structure and Properties of Matter - Students apply the properties of solutions, analyzing solutions in terms of solutes and solvents.
Wednesday June 16	Domain: Cells and Heredity - Students analyze the similarities and differences between organisms of different kingdoms.
	Domain: Energy Transformations - Students understand radioactivity. - Students examine the phases of matter and the related atomic and molecular motion.
Thursday June17	Domain: Cells and Heredity - Students explain the process of inheritance of genetic traits. * Students demonstrate understanding of Mendel's Laws in genetic inheritance and variability. - Students discuss the use of DNA technology in the fields of medicine and agriculture.
	Domain: Energy Transformations - Students investigate and describe molecular motion as it relates to thermal energy changes in conduction, convection, and radiation. - Students analyze energy transformations and the flow of energy in systems.
Friday June 18	Domain: Cells and Heredity - Students differentiate how organisms from different kingdoms obtain, transform, and transport, energy and/or material. - Students understand the relationships between single-celled and multicelled organisms, on a broad, conceptual level.
	Progress Assessment

Day	Content
Monday June 21	Domain: Ecology - Students evaluate relationships between organisms, populations, communities, ecosystems, and biomes.
	Domain: Forces, Waves, and Electricity - Analyzes relationships between force, mass, and motion by applying the calculations of velocity and acceleration.
Tuesday June 22	Domain: Ecology - Students describe the flow of matter and energy through an ecosystem by organizing the components of food chains and webs.
	Domain: Forces, Waves, and Electricity - Students evaluate the application of Newton's three laws in everyday situations related to inertia explaining falling objects as related to gravitational force. * Applies the calculations of work and mechanical advantage to complex systems.
Wednesday June 23	Domain: Cells and Heredity - Students differentiate the functions of the macromolecules. - Students describe the structures of cells and the structure and function of their components.
	Domain: Forces, Waves, and Electricity - Students describe the properties of waves.
Thursday June 24	Domain: Ecology - Students use diagrams to interpret the interactions of organisms within food chains and webs. - Students determining the role of different organisms in food chains and webs.
	Domain: Forces, Waves, and Electricity - Students understand the properties of electricity and magnetism.
Friday June 25	Biology Key Concepts - Review
	Physical Science Key Concepts -Review
	Administration of the Georgia High School Graduation Test

Georgia High School Graduation Test Science Instructional Plan

Monday, June 14

Objective

Domain: Cells and Heredity

- Students examine the similarities and differences between prokaryotic and eukaryotic cells.

Time	Activity/Task	Assessment
	Prokaryotic and Eukaryotic Cell Activity Provide each student with two baggies; one represents a prokaryotic cell and the other represents a eukaryotic cell. Students will complete a double sided double bubble map on comparing and contrasting each bag (See Monday's, June 14 materials section). The teacher should draw a double sided double bubble map on chart paper and post it on the board. Each student contributes one attribute to the class double sided double bubble map. Teacher Note: Teacher will place their suggestions on the class map. Be sure that the class double sided double bubble map contains the information on the Teacher Notes page. (See Teacher Notes page in Monday's, June 14 materials section).	Student graphic organizers. Student participation in classroom discussions.
10 min	Interactive Notebook Teacher Note: Students should keep an interactive notebook during the 2 weeks of the ExPreSS program. The notebook can be used to study and engage them in the content. Students should copy the class double sided double bubble map in their notebooks. Ask students to identify at least one difference and explain why they are different in their notebooks. After everyone has finished, ask the students to share their notebook with a classmate and to have a discussion about their notes.	Student's notebooks.
15 min	Assessment Questions -Prokaryotic vs. Eukaryotic Activity Give each student an assessment card (see Assessment Cards questions in Monday's, June 14 materials section). Give students time to think about the answer prior to raising their hands to answer orally. If they are correct they get a new question. Incorrect questions result in another attempt and then individual help. Students only respond by giving the letter of the answer choice. Do this for several minutes and identify any areas that students seem to have problems with. Review these areas with the group. Teacher Note: Each student has a different question.	Student's answer to the questions.

Monday, June 14 (continuation)		
Objective Domain: Cells and Heredity - Students describe the structures of cells and the structure and function of their components. * describing the roles of cell organelles in the following: - information feedback - motility - obtaining, storing, and using energy - protein construction - reproduction - transport of material - waste disposal		
Time	Activity/Task	Assessment
15 min	Cell Structure and Function Activity Each student has a baggie with the name, structure, cell models, and pictures of the organelles. Ask the students to identify each organelle's picture by placing the name tag on top of it and to match each organelle with its corresponding function (see below for an example). Teacher Note: Teachers will walk around and assess as they direct students in which organelle is being identified. Give students clues as they determine which picture to choose or give them clues about the function if they are struggling.	Students demonstrate understanding through the use of the manipulative
15 min	Cell Structure and Function Activity (continuation) Students will then draw the organelles in their notebook, describe how it looks and give an analogy to remind them of its function. Teacher note: The function of the organelles is a major focus of this activity. Relating the functions to different types of cells is also critical. The assessment of this activity should not be a diagram of the cell to label the specific parts but rather a comparison of why some organelles are in some cells but not others. The assessment should also include the relationship of the cell organelles to the life processes (protein synthesis, respiration, photosynthesis, etc.).	Student's drawing and description of their organelle's

Monday, June 14 (continuation)		
Time	Activity/Task	Assessment
	Assessment Questions -Organelle's Functions Activity Give each student an assessment card (see Assessment Cards questions in Monday's, June 14 materials section). Give students time to think about the answer prior to raising their hands to answer orally. If they are correct they get a new question. Incorrect questions result in another attempt and then individual help. Students only respond by giving the letter of the answer choice. Do this for several minutes and identify any areas that students seem to have problems with. Review these areas with the group. Teacher Note: Each student has a different question.	Student's answer to the questions.
20 min	Review Questions Provide students with a set of questions (see Review Questions 1 handout in Monday's, June 14 materials section) about the cell organelles, their function and the differences between prokaryotic and eukaryotic cells. Give them 15 minutes to answer the questions individually. Conduct a group discussion of the answer to the questions and ask the students to correct their own answer if necessary and to write an explanation of why the answer needed to be corrected. The explanation must state the original reason the student chose the wrong answer and what makes the correct answer correct.	Student questionnaire

Monday, June 14 (continuation)

Objective

Domain: Structure and Properties of Matter

- Students describe atoms, understanding the structure of an atom.
- Students identify the symbol, atomic number, and atomic mass of the first 20 elements on the periodic table.

Time	Act
	Atomic Structure-Activating Sta Have students to draw on pap beside the circle (see below).

Tell them this is an early model of the atom then ask what the circle represents? What do the half-circles represent? (Electron clouds of different energy levels). Give the students pom-poms of different colors, so that one color represents protons, a different color represents electrons, and a third color represents neutrons. Then ask students to build a model of the lithium atom 30 min with their pom-poms or construction paper using only protons and electrons at this point.
Teacher notes: Walk around and assess student knowledge of atomic structure. At this point, direct instruction may be necessary where you ask them which subatomic particle resides in the nucleus and which one resides in the energy levels. Differentiate how many in each level. Then ask students to put the correct number of protons and electrons in an atom of carbon. Give them several other atoms until everyone can build a model of the atom with the correct number of electrons, protons, and neutrons. Point out the fact that the atomic number gives them this info. Differentiate among charges on subatomic particles.

Atomic Mass and Atomic Number
Differentiate between atomic mass number and atomic number on the Periodic Table. Explain that the atomic mass is the mass of the nucleus which includes protons and neutrons. Therefore, if the atomic mass is the number of protons and neutrons and the

Students correctly place protons, electrons, and neutrons in the model.

Monday, June 14 (continuation)		
Time	Activity/Task	Assessment
10 min	Structure of the atom Put the students in groups of three and ask them to complete the first three sections of the anticipation guide Structure of the Atom (see Structure of the Atom anticipation guide in Monday's, June 14 materials section).	Completing the reading anticipation guide.
25 min	Structure of the atom (continuation) Either individually or in groups, asks the students to watch the video Physical Science Series: Atomic Structure and the Periodic Table (only the first 11 segments) on unitedstreaming.com. Conduct a round table discussion of the video and ask the students to review their anticipation guide by including any new information that they may have learned.	Round table discussion
20 min	Structure of the atom Provide students with the Atomic Structure tiles (see Atomic Structure tiles handout in the Monday materials section) and ask them to answer the questions. Teacher Notes: Due to time constrains you may want to assign different groups to each student or groups of students and then have the students or groups present the information to the class. If you decide for the latter option, make sure that the students fill in the missing answers in their own tiles.	Answering the questions for each atom tile.
20 min	Review Questions 2 Provide students with a set of questions (see Review Questions 2 handout in the Monday materials section) about the structure of the atom and the concepts of atomic number and atomic mass. Give them 15 minutes to answer the questions individually. Conduct a group discussion of the answers to the questions. Ask students to correct their answers if necessary providing an explanation for the correction. The explanation must state the original reason the student choose the wrong answer and what makes the answer choice correct.	Student questionnaire
10 min	Closing for Physical Science Day 1 Have students do a Think-Pair-Share where they explain to another person how to determine the number of protons, electrons, and neutrons in an atom. While students share, the teacher "cruises" the room and listens for incorrect explanations. If students are still confused, you may have to pull some aside and work with them one-on-one while others are doing a different assignment.	

Teacher Notes for the Prokaryotic and Eukaryotic Cells Activity

The following chart represents some of the points the teacher might want to cover in discussing prokaryotic versus eukaryotic cells. Student input in the baggie activity might be as simple as, "one has a lot of stuff and the other one has hardly any parts". Clearly, you as the teacher will need to ask probing questions to get the students to expand on their observations prior to going into the direct instruction.

PROKARYOTES	EUKARYOTES
Typically considered to have no internal membranes, other than cytoplasmic membrane.	Have many internal organelles surrounded by membranes.
No organized nucleus	Have an organized nucleus with nuclear membrane
Few specialized cell organelles (for example - ribosomes without their own membranes)	Contain a variety of specialized membrane enclosed organelles like mitochondria, vacuoles, chloroplasts etc.
Typically contain circular DNA strands called plasmids which do not contain histones	Contains DNA with histones attached; forms chromosomes
Metabolism is often anaerobic (without oxygen), or aerobic (with oxygen)	Most metabolism is aerobic
Mostly unicellular (one-celled)	Both unicellular and multicellular types
Cells are typically small (1 to 10 microns)	Cells are larger (10 to 100 microns)
Classified into Kingdoms of Archaebacteria and Eubacteria.	Classified in Protist (Protista), Fungi, Plant and Animal Kingdoms
Primitive structures	More organized structures

Which of the words below best completes this concept map?
a. Animal Cell
b. Eukaryote
c. Prokaryote
d. Plant Cell
3.

Which organelle contains a eukaryotic cell's chromosomes?
a. Golgi body
b. Nucleus
c. Cell membrane
d. Nucleolus
5.

One difference in prokaryotic cells and eukaryotic cells is that eukaryotic cells
a. Contain organelles
b. Do not have a nucleus
c. Are all surrounded by a cell wall
d. Are very small compared to prokaryotic cells
2.

The drawing above is a eukaryotic cell because
a. It has organelles
b. It has a nucleus
c. It's DNA is separate from the rest of the cell
d. All of the above
4.

Prokaryotic cells are
a. Small
b. Bacteria
c. Surrounded by a cell wall
d. All of the above
6.

In prokaryotic cells, the DNA is
a. Surrounded by a nucleus
b. Physically separated from the rest of the cytoplasm by a membrane
c. Usually coiled and circular
d. Not present

Assessment Cards -Prokaryotic vs. Eukaryotic Activity

7.

In eukaryotic cells, the DNA is
a. Floating free in the cytoplasm
b. Not present
c. Surrounded by a nucleus
d. Found in the cell membrane
9.
A cell that contains no nucleus, is generally smaller than the other, and is considered "primitive" would be classified as
a. A prokaryotic cell
b. A eukaryotic cell
c. Both

11.

A cell that contains chloroplasts, a nucleus, and mitochondria is discovered. Biologists might decide it could be
a. A eukaryotic cell
b. A prokaryotic cell
c. Neither a eukaryotic or prokaryotic cell
d. Both a eukaryotic or prokaryotic cell

13.

A cell has mitochondria, ribosomes, smooth and rough ER, and other parts. Based on this information, it could not be
a. A cell from a pine tree
b. A bacterium
c. A yeast (fungus) cell
d. A grasshopper cell
8.

Eukaryotic cells are differentiated from prokaryotic cells because eukaryotic cells
a. Are much smaller.
b. Have permeable membranes.
c. Have a higher rate of reproduction.
d. Have nuclei.

10.

A cell is discovered that contains a cell membrane. Biologists might decide it could be
a. A eukaryotic cell
b. A prokaryotic cell
c. Neither a eukaryotic or prokaryotic cell
d. Both a eukaryotic or prokaryotic cell
12.

Bacteria cells are prokaryotic. In comparison to eukaryotic cells they usually
a. Have a smaller nucleus
b. Are smaller
c. Have a greater variety of organelles
d. Have smaller organelle compartments
14.

Which of the following clues would tell you whether a cell is prokaryotic or eukaryotic?
a. The presence or absence of a rigid cell wall
b. Whether or not the cell is partitioned by internal membranes
c. The presence or absence of ribosomes
d. Whether or not the cell carries out reproduction

Index Card Questions for Biology

1. What structures can be identified in a typical animal or plant cell?
2. Compare prokaryotic and eukaryotic cells.
3. Describe the role of the cell membrane in maintaining homeostasis.
4. Which of the following statements about plant and animal cells is true?
A. Plant cells have a nucleus and a cell wall; animal cells do not have either of these structures.
B. Plant cells have a cell wall and chloroplasts; animal cells do not have either of these structures.
C. Plant cells have a cell wall and a cell membrane; animal cells have a cell wall but not a cell membrane.
D. Plant cells have chloroplasts and mitochondria; animal cells have chloroplasts but do not have mitochondria.
5. Which of these is a function of the cell membrane in all cells?
A. Producing cellular nutrients.
B. Preserving cellular wastes.
C. Neutralizing chemicals.
D. Maintaining homeostasis.
6. In which organelle are proteins produced?
I. nucleus
II. lysosome
III. ribosome
IV. mitochondria

7. Experimental Observations

1. Nucleus is present.
2. Cell wall is present.
3. Chloroplasts and mitochondria are both present.

The eukaryotic organism described above should be classified as
A. an animal
B. a bacterium
C. a fungus
D. a plant

Cell Structure and Function Activity

Cell Structure and Function Activity

Assessment Cards -Organelle's Function Activity

Abstract

1.

Plant and animal cells are similar in structure, function, and development. What does the plant cell have that the animal cell does not have? a. Nucleus b. Cell membrane c. Organelles d. Cell wall

3.

A researcher made an interesting observation about a protein made by the ribosome and eventually used to build a cell's plasma membrane. The protein in the membrane was actually slightly different from the protein made in the ribosome. The protein was probably changed in the
a. Golgi apparatus
b. Endoplasmic reticulum
c. mitochondrion
d. nucleus
5.

The cell organelle shown on this photograph is responsible for
a. Controlling the cell
b. Cellular respiration
c. Transporting proteins across the cell membrane
d. Modifying proteins and carbohydrates
2.

Cellular respiration is to the mitochondria as photosynthesis is to the
a. Endoplasmic reticulum
b. Nucleus
c. Golgi
d. Chloroplast
4.

Genetic information is stored in the
a. RNA molecule
b. ATP molecule
c. DNA molecule
d. Ribosome
6.

Of the following organelles, which group is involved in manufacturing substances needed by the cell?
a. Iysosome, vacuole, ribosome
b. ribosome, rough ER, smooth ER
c. vacuole, rough ER, smooth ER
d. smooth ER, ribosome, vacuole
e. rough ER, lysosome, vacuole

Assessment Cards -Organelle's Function Activity

Abstract

7.

Which organelle is directly involved in cellular transport?

a. Chloroplast
b. Mitochondria
c. Endoplasmic reticulum
d. Lysosome

8.

Which of the following correctly matches an organelle with its function?
a. mitochondrion . . . photosynthesis
b. nucleus . . . cellular respiration
c. ribosome . . . manufacture of lipids
d. Iysosome . . . movement
e. central vacuole . . . storage
9.

You would expect a cell with an extensive Golgi apparatus to
a. make a lot of ATP
b. secrete a lot of material
c. move actively
d. perform photosynthesis
e. store large quantities of food

11.

The organelle responsible for the breakdown of carbohydrates is the
a. Ribosome
b. Mitochondria
c. Chloroplast
d. Nucleus

13.

The organelle most directly involved in cellular aerobic respiration is the
a. ribosome
b. mitochondrion
c. nucleus
d. lysosome
e. Golgi apparatus

12.

Plant and animal cells are similar in structure, function, and development. What does the plant cell have that the animal cell does not have?
a. Nucleus
b. Cell membrane
c. Organelles
d. Cell wall
14.

The organelle most closely associated with the manufacture of proteins within the cell is the
a. ribosome
b. Iysosome
c. nucleolus
d. cell wall
e. cell membrane

Assessment Cards -Organelle's Function Activity

16.

What is the function of the organelle shown above in cells?
a. Provide the cell with energy
b. Carry out cellular respiration
c. Expel cellular wastes
d. Package and store proteins

17.

The cell has up to several thousands of these tiny organelles scattered in its cytoplasm. They are often called "cellular power plants," because they convert organic materials into energy.
a. Mitochondria
b. Ribosomes
c. Chloroplasts
d. Nuclei
19.

The cell's primary site of ATP production is the
a. mitochondria
b. Iysosomes
c. nucleus
d. nucleolus
e. vacuoles
20.

Which cell parts are only found in plant cells?
a. chloroplast and ribosomes
b. mitochondria and ribosomes
c. cell wall and nucleus
d. chloroplast and cell wall

Index Card Questions for Physical Science

1. Compared to the charge and mass of a proton, an electron has
A. the same charge and a smaller mass
B. the same charge and the same mass
C. an opposite charge and a smaller mass
D. an opposite charge and the same mass
2. Which symbols represent atoms that are isotopes?
A. $\mathrm{C}-14$ and $\mathrm{N}-14$
B. $\mathrm{O}-16$ and $\mathrm{O}-18$
C. I-131 and I-131
D. Rn-222 and Ra-222
3. Which atom contains exactly 15 protons?
A. P-32
B. S-32
C. O-15
D. $\mathrm{N}-15$
4. What is the mass number of an atom which contains 28 protons, 28 electrons, and 34 neutrons?
A. 28
B. 56
C. 62
D. 90
5. The mass number of an element is 19 and the atomic number is 9 . The total number of electrons in the atom is:
A. 19
B. 9
C. 29
D. 10
6. The atom z has a mass number of 32 . It contains in its nucleus:
A. 32 protons
B. 32 protons and 32 electrons
C. a total of 40 protons and neutrons
D. 16 protons and 16 neutrons

Cell Organelles
Name: \qquad

Organelle	Prokaryotic or Eukaryotic or Both	Plant or Animal or Both	Location in cell [nucleus or cytoplasm]	Describe the function
Nucleus				
Cell Membrane				
Cytoplasm				
Ribosomes				
Endoplasmic Reticulum				
Golgi Apparatus				
Lysosomes				
Mitochondria				
Chloroplasts				
Cell Wall				
Plasmid				
Chromosome				

Review Questions 1
 Cell Organelles: Structure and Function

1. Which cell structure is a passageway for materials, provides protection, and allows cell recognition?
A. cell membrane
B. Golgi apparatus
C. mitochondrion
D. nucleus
2. This diagram represents structures within an animal cell.

Structure X is a mitochondrion. What is the function of structure X ?
A. to make new cells
B. to make cellular energy
C. to store information
D. to control movement
3. Which type of organelle allows glucose to enter cells?
A. cell membrane
B. mitochondria
C. nucleus
D. ribosomes
4. Which organelle breaks down food into particles the cell can use?
A. Golgi apparatus
B. lysosome
C. endoplasmic reticulum
D. mitochondrion
5. Which organelle makes proteins using coded instructions that come from the nucleus?
A. Golgi apparatus
B. mitochondrion
C. vacuole
D. ribosome
6. Which organelles help provide cells with energy?
A. mitochondria and chloroplasts
B. rough endoplasmic reticulum
C. smooth endoplasmic reticulum
D. Golgi apparatus and ribosomes
7. Which of the following is a function of the cell membrane?
A. breaks down lipids, carbohydrates, and proteins from foods
B. stores water, salt, proteins, and carbohydrates
C. keeps the cell wall in place
D. regulates which materials enter and leave the cell
8. Which organelle is the principal site of protein synthesis in eukaryotic cells?
A. Nucleus
B. Ribosomes
C. Mitochondria
D. Chloroplasts
9. Which of these is a function of the cell membrane in all cells?
A. Producing cellular nutrients.
B. Preserving cellular wastes.
C. Neutralizing chemicals.
D. Maintaining homeostasis.
10. In which organelle are proteins produced?
A. nucleus
B. lysosome
C. ribosome
D. mitochondria
11. Which of the following clues would tell you whether a cell is prokaryotic or eukaryotic?
A. the presence or absence of a rigid cell wall
B. whether or not the cell is partitioned by internal membranes
C. the presence or absence of ribosomes
D. whether or not the cell carries out cellular metabolism
12. You would expect a cell with an extensive Golgi apparatus to
A. make a lot of ATP
B. secrete a lot of material
C. move actively
D. store large quantities of food
13. Of the following organelles, which group is involved in manufacturing substances needed by the cell?
A. lysosome, vacuole, ribosome
B. ribosome, rough ER, smooth ER
C. vacuole, rough ER, smooth ER
D. smooth ER, ribosome, vacuole
14. Some unicellular organisms are mobile (have the ability to move) and some are nonmobile. Which cellular structures are associated with movement?
A. Ribosomes
B. Flagella
C. Chloroplasts
D. Vacuoles
15. Which characteristic of prokaryotic organisms makes them different from eukaryotes?
A. Prokaryotic cells do not have membranebound organelles.
B. Prokaryotes do not have chromosomes.
C. Prokaryotes are made of cells.
D. Prokaryotes have DNA.
16. A cell with numerous ribosomes is probably specialized for
A. enzyme storage
B. energy production
C. cell division
D. protein synthesis

1. How many protons would this element have? 2. How many electrons? 3. How many neutrons? 4. If the isotope of lithium, $\mathrm{Li}-9$ were given to you, how many neutrons would you have? 5. How many valence electrons are in an atom of this element? 6. How will this atom bond? 7. Will it lose, gain, or share electrons?	1. How many protons would this element have? 2. How many electrons? 3. How many neutrons? 4. If the isotope of beryllium, Be13 were given to you, how many neutrons would you have? 5. How many valence electrons are in an atom of this element? 6. How will this atom bond? 7. Will it lose, gain, or share electrons?	1. How many protons would this element have? 2. How many electrons? 3. How many neutrons? 4. If the isotope of boron, B-12 were given to you, how many neutrons would you have? 5. How many valence electrons are in an atom of this element? 6. How will this atom bond? 7. Will it lose, gain, or share electrons?	1. How many protons would this element have? 2. How many electrons? 3. How many neutrons? 4. If the isotope of carbon, $\mathrm{C}-16$ were given to you, how many neutrons would you have? 5. How many valence electrons are in an atom of this element? 6. How will this atom bond? 7. Will it lose, gain, or share electrons?
3 6.94	4 Be 9.01	5 B 10.81	6 R

1. How many protons would this element have? 2. How many electrons? 3. How many neutrons? 4. If the isotope of nitrogen, N 18 were given to you, how many protons \& electrons would you have? 5. How many valence electrons are in an atom of this element? 6. How will this atom bond? 7. Will it lose, gain, or share electrons?	1. How many protons would this element have? 2. How many electrons? 3. How many neutrons? 4. If the isotope of oxygen O-17 were given to you, how many neutrons would you have? 5. How many valence electrons are in an atom of this element? 6. How will this atom bond? 7. Will it lose, gain, or share electrons?	1. How many protons would this element have? 2. How many electrons? 3. How many neutrons? 4. If the isotope of fluorine, F-25 were given to you, how many neutrons would you have? 5. How many valence electrons are in an atom of this element? 6. How will this atom bond? 7. Will it lose, gain, or share electrons?	1. How many protons would this element have? 2. How many electrons? 3. How many neutrons? 4. If the isotope of neon, $\mathrm{Ne}-22$ were given to you, how many neutrons would you have? 5. How many valence electrons are in an atom of this element? 6. How will this atom bond? 7. Will it lose, gain, or share electrons?
7 $\begin{aligned} & \mathrm{NT} \\ & 14.01 \end{aligned}$	8 16.00	9 \sqrt{H} 19.00	10 Ne 20.18

Review Questions 2
 The Atom and its Structure

1. Compared to the charge and mass of a proton, an electron has
A. the same charge and a smaller mass
B. the same charge and the same mass
C. an opposite charge and a smaller mass
D. an opposite charge and the same mass
2. Which symbols represent atoms that are isotopes?
A. C-14 and $\mathrm{N}-14$
B. O-16 and O-18
C. I-131 and I-131
D. Rn-222 and Ra-222
3. The nucleus of sodium- 23 contains:
A. 23 protons and 11 neutrons
B. 23 protons and 11 electrons
C. 11 protons and 12 electrons
D. 11 protons and 12 neutrons
4. Which pair of elements is MOST similar?
A. Ca and F
B. Na and Cl
C. Ne and Ar
D. Li and H
5. The mass number of an element is 19 and the atomic number is 9 . The total number electrons in the atom is:
A. 19
B. 9
C. 29
D. 10
6. Which of the following pairs are isotopes of the same element?
A. atom J (27 protons, 32 neutrons) and atom L (27 protons, 33 neutrons)
B. atom Q (56 protons, 81 neutrons) and atom R (57 protons, 81 neutrons)
C. atom V (8 protons, 8 neutrons) and atom W (7 protons, 8 neutrons)
D. atom S (17 protons, 18 neutrons) and atom T (18 protons, 17 neutrons)
7. Which of the following are transferred or shared when two atoms react chemically?
A. protons
B. neutrons
C. electrons
D. photons
8. The illustration below shows the box from the Periodic Table that represents the element Oxygen (O)

Based on the information provided, how many neutrons do most oxygen atoms contain in their nucleus?
A. 4
B. 6
C. 8
D. 15

Teacher Notes for Interactive Notebook

Students would be well served by keeping an interactive notebook during the 2 week ExPreSS period. The notebook can be used to study and engage them in the content. Some examples of several ways to make a notebook interactive are shown below.

Physical Science:
Atoms-Figure 1: Students can cut a piece of paper into three sections then glue the top of it into the notebook. Teachers can assign different students different atoms. Figure 2 shows how students can draw the parts of the atom underneath the top sheet.

Figure 1

Figure 2

Atoms-Figure 3: To study the atom, have students glue small "pockets" into the notebook with a variety of atoms and their subatomic particle numbers available for them to place into the correct pocket.

Figure 3

Biology:
Cell Structures - Figures 5 \& 6: Students can make an interactive study site in their notebook for cell structures and functions. Provide each student with the Cell Structure and Function manipulatives and have them create a cell structures study guide where they create "pockets". They can place the structures, function or name in the pockets. Others are glued directly onto the paper. Students may then exchange notebooks with each other to determine if they can put the correct answers in each pocket.

Figure 5

Figure 6

DNA vs. RNA -Figure 7: Pockets can be glued into student notebooks where one side is RNA only, the other is DNA only, and the center is BOTH. Students then have RNA and DNA descriptions on small cards stored in an envelope on the left of the page. Students can categorize the descriptions based upon where they belong. Template for this is in Table 1.

Figure 7

Table 1: DNA vs. RNA Template

Contains thymine	Contains adenine	Contains guanine	Contains cytosine
Contains uracil	Double stranded	Single stranded	Deoxyribose sugar
Ribose sugar	Stays in the nucleus	Leaves the nucleus	Involved in transcription
Involved in translation	Attaches to ribosomes	Provides genetic code	Nucleic Acid
Messenger, ribosomal	"Reads" the genetic code	Made up of nucleotides	Double helix

Food Chains -Figures $8 \& 9$: Students can glue small "flaps" into their notebooks and can organize pictures of different food chains into the correct order. Teachers can check each student to make sure they understand the flow of energy correctly. If you have different food chains, students can exchange with each other after they have been checked.

Figure 8

Figure 9

Tuesday, June 15

Objective

Domain: Cells and Heredity

- Students explain the process of inheritance of genetic traits.
- Students differentiate between DNA and RNA, recognizing the role of each in heredity.

Time	Activity/Task
10 min	Activating Strategy - DNA and RNA The teacher provides students with a list of terms (see Term Tiles on the Tuesday's, June 15 Warm up Activity) and asks the students to group the terms into categories based on prior knowledge. Students are then asked to come up with a label for each grouping. The teacher will facilitate a class discussion by asking different pairs to share their groupings.
10 min	Exploring students ideas: DNA and RNA Anticipation Guide Transition into lesson by asking students what they think the topic of the lesson will be and discuss the standard and element making sure that students understand the language of the standard. Students then complete the Anticipation Guide for DNA/RNA (see Tuesday's, June 15 Materials Section).
DNA and RNA Activity Cards Provide students with a poster board as the one shown on the picture below.	

25 min
Ask the students to place each word in the correct box if it only describes DNA, only describes RNA or in the center boxes if it describes both molecules.
After the students complete the table provide them with reading material about DNA and RNA. Allow students time to read the material (aloud in groups, individually, jigsaw, etc.) After reading, students make adjustments to their organizer. Have a short class discussion about differences and similarities of DNA and RNA. Students complete the after section of the Anticipation Guide. Have students write a short summary about DNA and RNA. Use this information as a formative assessment.
Teacher Notes: Materials for this activity are provided for you and there is also an electronic copy of all the materials on the Tuesday materials section of this instructional booklet.

Assessment
Students complete groupings and provide explanation.

Completion of the anticipation guide.

Rationale for Classification handout. Students completing the chart.

Tuesday, June 15 (continuation)

Tuesday, June 15 (continuation)		
Time	Activity/Task	Assessment
20 min	DNA replication and Protein Synthesis Provide students with background information about how DNA is replicated. Watch the Unitedstreaming video Transcription of DNA to Messenger RNA (first six segments plus segments nine and ten). Conduct a round table discussion of the video and ask the students to complete the Video Viewing Summary handout. (See Video Viewing Summary handout in Tuesday's, June 15 materials section.)	Complete the Video Viewing Summary handout.
	DNA replication and Protein Synthesis Look at protein synthesis picture below so you can see how the manipulative is assembled. Cut each strand of DNA, mRNA, tRNA, and amino acids and place in a plastic baggie. Be careful! Do not cut the DNA strand or the mRNA holder into smaller pieces. All other pieces, (mRNA, tRNA, \& amino acids) are cut out by individual codons, anti-codons, \& amino acids, respectively. (See Protein Synthesis materials in Tuesday's, June 15 materials section.) Assign groups of students to different strands and allow them to correctly assemble the process. Students may swap strands for practice. Ask students to empty the baggie and find the DNA strand and place it in the nucleus.	Students reflection paper

Tuesday, June 15 (continuation)		
Time	Activity/Task	Assessment
Continuation from previous row	Place the mRNA holder beneath the DNA strand and match the appropriate codons. Move the completed mRNA strand out of the nucleus. Find the correct tRNA anticodons and pair them with the mRNA codons. Using the amino acid chart, find the correct amino acid sequence that would be brought to the ribosome for assembly of a polypeptide. When the students have completed the exercise, ask them to write a reflection of what they have learned about how the genetic information is transcribed and proteins synthesized.	

Tuesday, June 15 (continuation)		
Time	Activity/Task	Assessment
20 min	Review Questions 3 Provide students with a set of questions (see Review Questions 3 handout in Tuesday's, June 15 materials section) on the differences between DNA and RNA and the role of each in heredity. Give them 15 minutes to answer the questions individually. Conduct a group discussion of the answers to the questions. Ask students to correct their answers if necessary providing an explanation for the correction. The explanation must state the original reason the student chose the wrong answer and what makes the answer choice correct.	Student questionnaire
10 min	Closing for Biology Day 2 Hot Seat - Teacher writes terms and concepts from the lesson on sticky notes. One term or concept per sticky note. Affix the sticky note to the underside of student chairs. Have students look under their chair. If they have a sticky note, they pair up with someone who does not. Give pairs 2 minutes to write 2 sentences about their note based on the lesson in their notebooks. Student pairs share.	Sentences written in their notebook

Tuesday, June 15 (continuation)

Objective

Domain: Structure and Properties of Matter

- Students apply the properties of solutions, analyzing solutions in terms of solutes and solvents.

Time	Activity/Task	Assessment
	Guiding Questions - Solutions The teacher asks students three questions (see Warm-up Index	Students complete all index cards.

materials section) and gives students enough time to write their
10 min answers on three different index cards (one for each question). The teacher asks for two or three volunteers to share their answers and write these answers on a bulletin board to be visited again after the activity is completed.

Rate of Solution Lab Activity
35 min
See Tuesday's, June 15 materials section for instructions.
Solubility Videos
Watch the video segments on solubility from Discovery Education and ask the students to complete the Solubility handout. (see Solubility handout in Tuesday's, June 15 materials section)
Review with the students the answer to the guiding questions and ask them to revise their previous understanding of mixtures as recorded on their groups' previously completed organizer.

Solutions -Solvents and Solutes Discussion
Divide the students in groups of three, ask them to copy on a large sheet of paper the Solution graphic organizer (see Solution graphic organizer in Tuesday's, June 15 materials section) and complete it
15 min by recording the group's understanding of each one of the concepts.
Teacher Note: Depending on time the teacher may assign a different concept to each group and then ask each group to present their information.

Activity/Task				Review Questions 4 Provide students with a set of questions (see Review Questions 4 handout in the Tuesday's, June 15 materials section) about the properties of solutions. Give them 15 minutes to answer the questions individually. Conduct a group discussion of the answers to the questions, Ask students to correct their answers if necessary providing an explanation for the correction. The explanation must state the original reason the student chose the wrong answer and what makes the answer choice correct.	Student questionnaire
Time	25 min	Closing for Physical Science Day 2 Review the original answers to the warm-up questions and write the correct answer on the bulletin board.			
15 min					

Terms for Biology Warm up Activity

Anticipation Guide: Facts on DNA and RNA

Instructions:

In the column labeled me, place a check next to any statement with which you agree. After the classroom discussion, compare your opinions with those presented during the lesson.

Me	After the lesson	
		1. DNA is the hereditary material in humans and almost all other organisms.
		2. Nearly every cell in a person's body has the same DNA.
		3. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where is called mitochondrial DNA)
	4. DNA bases pair up with each other, Adenine with Thymine and Cytosine with Guanine, to form units called base pairs. Each base is also attached to a sugar molecule and a phosphate molecule.	
	5. Each strand of DNA in the double helix can serve as a pattern for duplicating the sequence of bases.	
	6. RNA serves as a temporary copy of genes that is use as a template for protein synthesis.	
	7. RNA molecules are built from three basic components: ribose, phosphate, and a family of four bases guanine, adenine, cytosine, and uracil.	
	8. The RNA molecule is single stranded, and folded in various shapes.	
	9. RNA and DNA are both nucleic acids	
	10. RNA can carry genetic information.	

Video Viewing Summary
Name: \qquad Date: \qquad
Instructions:
Write your answer to the following questions based on the Transcription of DNA to Messenger RNA video that you just watched.

What is the structure of DNA?	
How is RNA different from DNA?	
How do the nitrogen bases pair?	
What is a nucleotide?	
What is transcription?	
How does transcription happen?	
What is a codon?	

Protein Synthesis Manipulative Answer Key
Strand 1

mRNA codon	tRNA anticodon	Amino acid tRNA carries
AUG	UAC	Met
AAG	UUC	Phe
GGG	CCC	Pro
CGC	GCG	Ala
UUA	AAU	Asp
UAA	AUU	Stop

Strand 2

mRNA codon	tRNA anticodon	Amino acid tRNA carries
AUG	UAC	Met
AAA	UUU	Lys
GGC	CCG	Gly
UUA	AAU	Leu
GGA	CCU	Gly
ACU	UGA	Stop

Strand 3

mRNA codon	tRNA anticodon	Amino acid tRNA carries
AUG	UAC	Met
AUA	UAU	Iso
CAA	GUU	Glu
CAU	GUA	His
CCA	GGU	Pro
UGU	ACA	Stop

Strand 4

mRNA codon	tRNA anticodon	Amino acid tRNA carries
AUG	UAC	Met
AAG	UUC	Lys
UGC	ACG	Cys
AAA	UUU	Lys
UUC	AAG	Phe
UAA	AUU	Stop

Strand 5

mRNA codon	tRNA anticodon	Amino acid tRNA carries
AUG	UAC	Met
CUA	GAU	Leu
CGC	GCG	Arg
CGU	GCA	Arg
GAC	CUG	Asp Acid
UAA	AUU	Stop

Strand 6

mRNA codon	tRNA anticodon	Amino acid tRNA carries
AUG	UAC	Met
GUU	CAA	Val
GAA	CUU	Glu Acid
AUU	UAA	Iso
AUG	UAC	Met
UGU	ACA	Stop

Strand 1

AUG AAG GGG CGC UUA UAA

Strand 2
AUG AAA GGC UUA GGA ACU

Strand 3
AUG AUA CAA CAU CCA UGU

Strand 4
AUG AAG UGC AAA UUC UAA

Strand 5
AUG
CUA
CGC
CGU
GAC
UAA

Strand 6
AUG
GUU
GAA AUU
AUG
UGU
$1^{\text {st }}$ mRNA Strand amino acids
Met Phe Pro Ala Asp STOP
$2^{\text {nd }}$ mRNA Strand amino acids
Met Lys Gly Leu Gly STOP
$3^{\text {rd }}$ mRNA Strand amino acids
Met Iso Glu His Pro STOP
$4^{\text {th }}$ mRNA Strand amino acids
Met Lys Cys Lys Phen STOP
$5^{\text {th }}$ mRNA Strand amino acids
Met Leu Arg Arg Asp A STOP
$6^{\text {th }}$ mRNA Strand amino acids
Met Val GluAc Iso Met STOP

Teacher note: Keep one copy of this together to have as an answer sheet for each strand.

Review Questions 3
 DNA and RNA and Their Role in Heredity

1. Which process reduces the number of chromosomes in a cell?
A. binary fission
B. crossing over
C. meiosis
D. mitosis
2. Which best shows the proper code-structure sequence in protein synthesis?
A. DNA, mRNA, mRNA, polypeptide, enzyme
B. DNA, mRNA, tRNA, polypeptide, enzyme
C. enzyme, polypeptide, mRNA, mRNA, DNA
D. mRNA, DNA, mRNA, enzyme, polypeptide
3. As each section of the genetic code on DNA is transcribed to mRNA, the two strands of DNA rejoin. Then the mRNA moves into the cytoplasm through a pore in the nuclear membrane. Ribosomes attach to the mRNA, in the cytoplasm, to carry out the formation of a protein. What is this process called?
A. mutation
B. synthesis
C. translation
D. transference
4. If the sequence of nucleotides were AGC on a strand of DNA, what would be the nucleotide sequence on a strand of mRNA formed during transcription?
A. ACG
B. UCG
C. TGC
D. TCG

Which mRNA sequence complements the above section of DNA?
A. CUAGGA
B. TCGAAG
C. CTAGGC
D. AGCUUC
6. The function of mRNA is to
A. carry genetic information from the nucleus to the site of protein synthesis
B. begin the "unzipping" of the DNA molecule
C. maintain homeostasis within the cell during mitosis
D. direct the movement of centrosomes during meiosis
7. During meiosis how many times is the DNA replicated?
A. zero times
B. one time
C. two times
D. four times
8. Cells secrete proteins, often as enzymes, that have been engineered or directed by the DNA in the nucleus. Which processes are involved in protein synthesis?
A. transfer to RNA, then to amino acids
B. transcription into RNA, then translation into amino acids
C. replication of DNA, then transcription into enzymes
D. translation into RNA, then replication into DNA
9. What kind of bonds is found between nitrogen bases in a DNA molecule?
A. Hydrogen
B. Nitrogen
C. Oxygen
D. Phosphate
10. All chromosomes are composed of
A. DNA and lipids
B. DNA and protein
C. RNA and lipids
D. RNA and protein
11. Which is in the shape of a double helix?
A. Amino acid
B. Deoxyribonucleic acid
C. Enzyme
D. Protein
12. Messenger RNA carries genetic information in groups of three bases known as
A. Amino acids
B. Codons
C. Enzymes
D. Helixes
13. Which of the following DNA base pairs are correct?
A. A - A

C-C
B. A - T

T-A
C. A - T

G-A
D. A - T

T-G
14. In living things, whether plant or animal, the carrier of hereditary instructions is
A. DNA
B. Genetic vacuole
C. Messenger RNA
D. Mitochondria in animals, chloroplasts in plants
15. DNA and RNA are similar because they both contain
A. Deoxyribose
B. Nucleotides
C. Thymine
D. Double helices

Contains thymine	Contains adenine	Contains guanine	Contains cytosine
Contains uracil	Double stranded	Single stranded	Deoxyribose sugar
Ribose sugar	Stays in the nucleus	Leaves the nucleus	Involved in transcription
Involved in translation	Attaches to ribosomes	Provides genetic code	Nucleic Acid
Messenger, ribosomal	Reads" the genetic code	Made up of nucleotides	Double Helix

1. A pot containing salt water is boiled until the water is gone, leaving a salt crust on the bottom of the pot. The salt water would be considered a
A. Substance
B. Compound
C. Element
D. Mixture
2. A compound differs from a mixture in that a compound always has a
A. homogeneous composition
B. maximum of two components
C. minimum of three components
D. heterogeneous composition
3. In a solution the substance that does the dissolving is called
A. soluble
B. the solute
C. the solvent
D. an ion
4. Many laboratory preparations of solutions call for stirring the solvent while adding the solute. Which of the following is always an effect of this procedure?
A. It decreases the reactivity of the solute.
B. It decreases the solubility of the solute.
C. It brings the solute and solvent rapidly into contact
D. It produces a chemical reaction.

Rate of Solution Inquiry Lab

Standards
SPS6. Investigate the properties of solutions
a. Describe solution in terms of

- solute/solvent
- conductivity
- concentration
b. Observe factors affecting the rate a solute dissolves in a specific solvent

SCSh1. Students will evaluate the importance of curiosity, honesty, openness, and skepticism in science.
c. Explain that further understanding of scientific problems relies on the design and execution of new experiments which may reinforce or weaken opposing explanations.

SCSh2. Students will use standard safety practices for all classroom laboratory and field investigations.
a. Follow correct procedures for use of scientific apparatus.
b. Demonstrate appropriate techniques in all laboratory situations.
c. Follow correct protocol for identifying and reporting safety problems and violations.

SCSh3. Students will identify and investigate problems scientifically.
a. Suggest reasonable hypotheses for identified problems.
b. Develop procedures for solving scientific problems.
c. Collect, organize and record appropriate data.
e. Develop reasonable conclusions based on data collected.

SCSh4. Students will communicate scientific investigations and information clearly. a. Write clear, coherent laboratory reports related to scientific investigations.

Background Information:

Solutions are usually homogeneous mixtures that contain a solute (substance being dissolved) and a solvent (material that dissolves another substance). Solutes and solvents can be solids, liquids, or gases. One of the most common types of solutions involves a solid dissolved in a liquid. Water is usually referred to as the Universal Solvent because of the number of solutes that dissolve in water. Alcohols and organic solvents are the other common liquid solvents.

There are several factors that affect how quickly a solute dissolves in a solvent. In this activity, you will choose one factor as your independent variable- temperature, amount of stirring, or particle size. Remember that the other factors must be held constant.

Materials:

- test tubes - beakers - mortar \& pestle - spatula - thermometer (alcohol or stainless steel temp probe)	- stirring rod - $100-\mathrm{mL}$ graduated cylinder - hot plate - balance	- NaCl (granular) - NaCl (crystalline rock salt) - crushed ice - distilled water

Safety:

Safety goggles and aprons must be worn! Your procedure must be approved by the instructor before beginning the lab.

Hypothesis:

Identify your independent and dependent variables. Construct a hypothesis that predicts how your independent variable will influence the rate of solution. (Will the solute dissolve faster or slower?)

Variable:
My group will manipulate \qquad (temperature, amount of stirring, particle size)

Procedure:

Design a step-by-step procedure to test your independent variable. Before you start, ask your teacher to approve your procedure by initialing your notebook.

Data and Calculations:

Prepare a data table of your results.

Analysis:

1. Describe your experiment in terms of solute/solvent/solution. Explain.
2. Characterize solutions as unsaturated, saturated or supersaturated. Explain.
3. Summarize your results (What does your data show?). Make a statement that describes how your independent variable influences the rate of solution. State whether or not your hypothesis was correct.
4. Put your group findings on the chart. Complete the information below from the class results.

5. Identify in each experiment the solute/solvent/solution.
6. Characterize solutions in each experiment as unsaturated, saturated or supersaturated.
7. Describe how each tested independent variable influences the rate of solution.

Video Viewing Summary
Name: \qquad Date: \qquad

Instructions:

Write your answer to the following questions based on the Solubility videos that you just watched.

What needs to happen for a reaction to occur in a solution?	
What is solubility?	
What does it mean that a substance is completely soluble in water?	
What is one example of the use of knowing the solubility of a substance?	
Why do smaller particles dissolve faster than larger ones?	
What factors affect the solubility of a substance?	

Review Questions 4

Solutions

1. In the solution we call seawater, which of the following is the solvent?
A. Water
B. oxygen gas
C. salt
D. all of these are solvents
2. Air is a solution which includes many substances. See the composition of air chart below.

GAS	$\%$ in AIR
Nitrogen	78%
Oxygen	20.95%
Carbon Dioxide	0.03%
Argon	Less than 0.01%

Based on the information in this chart, which statement is FALSE?
A. Nitrogen gas is a solute in air.
B. Carbon dioxide gas is a solute in air.
C. Oxygen gas is a solute in air.
D. Argon is a solute in air.
3. A compound differs from a mixture in that a compound always has a
A. homogeneous composition
B. maximum of two components
C. minimum of three components
D. heterogeneous composition
4. Many laboratory preparations of solutions call for stirring the solvent while adding the solute. Which of the following is always an effect of this procedure?
A. It decreases the reactivity of the solute.
B. It decreases the solubility of the solute.
C. It brings the solute and solvent rapidly into contact.
D. It produces a chemical reaction.
5. A solution in which the crystallizing and dissolving rates of the solute are equal is
A. saturated
B. unsaturated
C. concentrated
D. dilute
6. The \qquad is the part of the solution that is present in the greater amount.
A. solute
B. solvent
C. ion
D. electrolyte
7. A solution in which more solute can dissolve is
A. Saturated
B. Unsaturated
C. Supersaturated
D. Concentrated
8. If you decrease the temperature, what happens to the dissolving rate of NaCl in water?
A. The dissolving rate increases because more collisions occur between solute and solvent.
B. The dissolving rate decreases because fewer collisions occur between solute and solvent.
C. The dissolving rate decreases because more collisions occur between solute and solvent.
D. No collisions occur between solute and solvent, so the rate goes to zero.
9. Which of the following statements shows the correct relationship between temperature and the solubility of a gas in a liquid?
A. Dissolved oxygen in a pond decreases when the water temperature increases.
B. Dissolved oxygen in a pond decreases when the water temperature decreases.
C. More sodium chloride can be dissolved in cold water than in hot water.
D. Carbon dioxide escapes from solution when you open a soda can.
10. What does it mean when a mixture is said to have reached saturation at a given temperature and pressure?
A. A dilute solution has been formed.
B. There is more solute than solvent in the mixture.
C. As much solute as possible is dissolved in the solvent.
D. The solute and solvent have formed a heterogeneous mixture.
11. Vinegar is a liquid solution containing acetic acid and water. It could be accurately classified as which of the following?
A. A colloid
B. A compound
C. A homogeneous mixture
D. A heterogeneous mixture
12. The salinity, or salt concentration, of tidal rivers flowing into the ocean increases as you travel down river approaching the mouth of the river. Describe in terms of solute and solvent this increase in salinity
A. The solvent is increasing greater than the solute
B. The solute is increasing greater than the solvent.
C. The solute and solvent are increasing in equal amounts.
D. The solute and solvent are both decreasing in equal amounts.
13. In all solutions, solutes and solvents
A. Are always found as liquids
B. Are found in the same amounts
C. Can be separated by visible means.
D. Are found in the same state of matter.
14. Carbon steel, usually simply called steel, is made by melting iron metal and adding a small amount of carbon to the liquid metal. In doing this, the alloy (solution of these metals) becomes much stronger and can be used for everything from automobile parts to I-beams found in skyscrapers. What is the solvent in steel?
A. Carbon
B. Carbon steel
C. Iron
D. Steel
15. E85 is an alcohol fuel mixture of 85% ethyl alcohol and 15% gasoline by volume. It is becoming more common in the midwestern United States where corn (the source of ethyl alcohol) can be found.

Identify the solvent in this mixture.
A. Ethyl alcohol
B. Gasoline
C. Water
D. E85

Wednesday, June 16		
Objective Domain: Cells and Heredity		
Time	Activity/Task	Assessment
10 min .	Activating Strategy: Photos of viruses, protists, and bacteria. Show the students the photos of 6 organisms (see Organisms' Pictures activating strategy photos in Wednesday's. June 16 materials section). Ask the students to write in their notebook what type organism they think each one is.	Teacher checks each student's decision and asks some students to explain their decision aloud.
20 min .	Student Work Session 1: Give each group of three students pictures of 10 different organisms including pictures of bacteria, viruses, and protists (see Photos of Organisms in Wednesday's, June 16 materials section). Introduce the names of the 6 kingdoms and designate an area on the wall for each kingdom. - Ask the students to place their pictures on the wall under the kingdom names they think their organisms belong. - Conduct a class discussion on the general characteristics of each kingdom and what to do with the pictures of the organisms that do not appear to fit in any category. - Using their notes and other classroom resources, have students complete the Six Kingdom graphic organizer that identifies the characteristics of the 6 kingdoms. Teacher note: allow students the opportunity to construct their own graphic organizer OR provide them with an outline attached here(see Six Kingdom Graphic Organizer in Wednesday's, June 16 materials section)	Completed graphic organizer Participation in the classroom discussion
30 min	Student Work Session 2: Kingdoms Station Lab Students will rotate through a series of specimens where they will complete the Kingdoms Station Lab data collection sheet (see the Kingdoms Stations Lab handout in Wednesday's, June 16 materials section). Teacher note: Create stations with either live organisms or photos of them for students to rotate through. Many of these specimens can be collected in your neighborhood.	Students will complete the stations lab data collection sheet.

Wednesday, June 16 (continuation)				Activity/Task	Assessment
Time	Formative Assessment: Create 6 groups of students and hand out one set of kingdom circles bags (see the Kingdoms circles handouts in Wednesday's, June 16 materials section) to each group. Have the students place the appropriate wedge describing a particular characteristic on the appropriate kingdom wedge. Teacher Note: Do not cut out kingdom circle pages titled "Kingdom Circles". Cut pages titled "Answer Circle" as correctly placed. wedges. Walk from group to group checking the correctness of the work and once the students have the correct results ask each one of them to copy the information into their notebooks. Finally, ask the students to put all the materials in the plastic bag and switch the materials with another group. Repeat the process until each group has gone through all the different kingdoms.	min.			
25 min.	Review Questions 5 Provide students with a set of questions (see Review Questions 5 handout in Wednesday's, June 16 materials section) on the similarities and differences between organisms of different kingdoms. Give them 15 minutes to answer the questions individually. Conduct a group discussion of the answers to the questions. Ask students to correct their answers if necessary providing an explanation for the correction. The explanation must state the original reason the student choose the wrong answer and what makes the answer choice correct.	Student questionnaire			
10 min.	Closure: Students summarize what they have learned today OR teacher says a sentence (i.e. "there are 6 kingdoms"). The next student adds a sentence to what you said then the next student adds a sentence to that one. This continues around the room with each student adding onto what the previous student stated. Each sentence should be a fact about kingdoms and should not repeat previously state sentences.	Student participation. Homework assignment.			

Wednesday, June 16 (continuation)		
Objective Domain: Energy Transformations		
Time	Activity/Task	Assessment
15 min	Warm up for Energy Transformations Domain Place students in groups of 4 , using a place mat/dry erase markers students will write everything they can remember about the phases or states of matter. Ask the students to number themselves from one to four. Then instruct the first student to write everything he/she can remember about the phases or states of matter. Rotate the place mat to the next student (student 2) so they can add their comments to the list. After the placemat has made one complete rotation, have each group condense their ideas into a central idea and write it in the middle. A group spokesman will then transfer the idea onto a post it note, read it to the class and place it on the "phase change" poster on the wall (a piece of butcher paper). Clear up misconceptions. Teacher note: Give each group a post-it note as they are condensing ideas. Use one color for this part of the lesson. Save the post-it note as this is used in the summary.	Students' placemat responses and group post it notes
10 min	Phase Change Simulation Divide the class into two or three groups depending on class size. Each group must demonstrate solids, liquids, and, gases using their bodies as molecules. Solids will be tightly grouped with little movement, liquids are somewhat spread out with more movement (students hopping up and down), gases will be more spread out with greater movement. Discuss temperature's role in phase change.	Students' models
15 min	Pom- Pom Simulation Have students return to their groups of 4 with the placemat. Give each student a bag of pom-poms and have them construct models of each phase of matter. Students will then draw pictures of their models with the corresponding temperatures' ranges. Teacher note: Walk around the classroom and check for understanding by asking students questions as you view their models. All the pom-poms in the students' bags should be of the same size and color.	Students' drawings

Wednesday, June 16 (continuation)				Assessment
Time	Phase change Stations Labs Students can remain in the groups that they were in earlier to rotate through the stations lab. Each student should complete their own lab responses (see Phase Change Observation handout in Wednesday's, June 16 materials section). Allow only 5 minutes per station. Instruct students about safety concerns briefly before beginning. See the Phases change stations lab in the Wednesday materials section. Teacher note: Circulate around the lab to monitor and check for understanding clearing up misconceptions as they arise.			Student lab responses
15	Summary Have students return to their groups, have them retrieve their group's post it note from earlier. Give each group different color post-it-notes and have them add/delete or revise their earlier responses. Place both notes back on the poster.	Student responses		
\&	5 min			

Wednesday, June 16 (continuation)		

Wednesday, June 16 (continuation)		
Objective Domain: Energy Transformations - Students understand radioactivity.	Activity/Task	Assessment
Time	Review Questions 6 Provide students with a set of questions (see Review Questions 6 handout in Wednesday's, June 16 materials section) on the concepts of half life and radioactivity. Conduct a group discussion of the answers to the questions. Ask students to correct their answers if necessary providing an explanation for the correction. The explanation must state the original reason the student choose the wrong answer and what makes the answer choice correct.	Student questionnaire
10 min.		

Six Kingdom Classification System Graphic Organizer						
	Archaebacteria	Eubacteria	Protista	Fungi	Plantae	Animalia
Common Characteristics						
Common Examples						
Cell Type (prokaryote or eukaryote)						
Complexity (unicellular or multicellular)						
Mode of Nutrition (autotrophic or heterotrophic						
Type of Habitat						
Type of Reproduction (asexual or sexual or both)						

Station \#3

Organism	Euglena	

Characteristics	Euglenas are single cell organisms that live in freshwater. Euglenas are green like plants and thus carry out photosynthesis. However, unlike plants Euglena does not have a cellulose cell wall. In addition, Euglenas possess a long whip-like structure on one side that propels them through water. Euglena is unique in that it is both heterotrophic (must consume food) and autotrophic (can make its own food). The euglena has a stiff pellicle outside the cell membrane that helps it keep its shape. In the center of the cell is the nucleus, which contains the cell's DNA and controls the cell's activities. The interior of the cell contains a jelly- like fluid substance called cytoplasm.

StatiOn \#5	
Organism	White Pine
	The White Pine has the distinction of being the tallest tree in eastern North America growing to be 50' - 80' feet in height. Their leafs are in the form of needles, 3 to 5 inches long, with five, slender, flexible needles per fascicle. The needles appear blue-green because of 3 or more glaucous lines of stomata. The trees reproduce sexually by seeds that are transported by wind. The cone production begins when the tree is between 5 - 10 years old. Good seeds are produced every $3-5$ years, with some seed produced in intervening years. The bark of these trees darkens and thickens as they age. It is smooth and gray on young growth and becomes gray- brown, deeply furrowed with broad ridges of irregular rectangular purple-tinged scaly plates as the tree gets older. The White Pines are moderately fire resistant and can grow in nearly all soil types.

Station \#6

Organism	Cyanobacterium
Characteristics	The cyanobacteria are aquatic and photosynthetic organisms. They are quite small and usually unicellular, though they often grow in colonies large enough to see. Cyanobacteria are very important to plants as the chloroplast with which plants make food for themselves is actually a cyanobacterium living within the plant's cells. Like other bacteria, cyanobacteria have no nucleus or internal membrane systems. In many species, however, the external membrane has been folded to increase total surface area. The ability of cyanobacteria to perform oxygenic photosynthesis is thought to have dramatically changed the composition of life forms on Earth by provoking an explosion of biodiversity and leading to the near-extinction of oxygen-intolerant organisms. Cyanobacteria reproduce by binary fission (splitting in two).

Kingdom Circles: Body Type

Kingdom Circles: Cell Structure

Kingdom Circles: Cell Type

Answer Circle Wedges

Kingdom Circles: Examples

Answer Circle Wedges

Review Questions 5

Similarities and Differences between Organisms of Different Kingdoms

1. The diverse organisms shown in the diagram below belong to the same kingdom.

To which kingdom do these organisms belong?
A. Animalia
B. Fungi
C. Plantae
D. Protista
2. This kingdom is composed of autotrophs which obtain their energy exclusively from photosynthesis.
A. Archaebacteria
B. Animals
C. Protists
D. Plants
3. Members of this kingdom are exclusively anaerobic unicellular prokaryotes including a range of organisms that live in extreme environments.
A. Archaebacteria
B. Eubacteria
C. Protists
D. Animals
4. The heterotrophic eukaryotic multi-celled organism shown below absorbs its nutrients from its environment (called a saprophyte) with a network of hyphae shown in A. It reproduces asexually via budding. To which kingdom does it belong?

A. Archaebacteria
B. Eubacteria
C. Protists
D. Fungi
5. An outbreak of disease is being researched by the CDC in Atlanta. The organism causing the disease is a heterotroph with cells that do not have walls and enzymes released from organs in its digestive system. To which kingdom does this pathogen belong?
A. Animal
B. Eubacteria
C. Protists
D. Fungi
6. A fungus has a wall composed of a polysaccharide similar to cellulose, which is also found in the exoskeleton of insects. This material is
A. chitin
B. hemicellulose
C. leucine
D. protein-lipid layers
7. Which of the following are prokaryotic organisms?
A. Bacteria
B. Oak trees
C. Mushrooms
D. Brown algae
8. For which group of organisms is binary fission the most common type of asexual reproduction?
A. Simple plants like mosses and fens
B. Advanced flowering plants
C. Invertebrates such as worms
D. Unicellular organisms like amoebae
9. Bread molds, a type of fungi, reproduce sexually by conjugation and asexually by
A. spores
B. grafting
C. cloning
D. meiosis
10. Which of the following distinguishes the organisms in the kingdom Fungi from other eukaryotic organisms?
A. fungi are unicellular
B. fungi reproduce sexually
C. fungi obtain nutrients by absorption
D. fungi make food through photosynthesis
11. Which of these kingdoms includes prokaryote organisms that were among the first forms of life to evolve?
A. Fungi
B. Algae
C. Plantae
D. Archaebacteria
12. A microbiologist notices a strange organism growing on the leftover lasagna that he has left in the lab refrigerator for 2 months. He removes a sample of the organism and places it under an electron microscope. He notes that the organism has no nuclear membrane and no mitochondria in its cells. Though very small in size, a cell wall is present. He notes that the organism seems to be strictly single-celled. Based on the structure of the cells, what type of organism is this likely to be?
A. A eukaryote in kingdom fungi
B. A eukaryote in kingdom protista
C. A prokaryote in kingdom plantae
D. A prokaryote in kingdom eubacteria
13. A certain kingdom contains heterotrophic, eukaryotic organisms with cell walls. Organisms in this kingdom are usually multi-celled, but a few single-celled exceptions do exist. No organism in this kingdom can photosynthesize or move on its own. What kingdom is this?
A. Plantae
B. Eubacteria
C. Fungi
D. Animalia
14. A mushroom and a humpback whale are alike because both are
A. Motile
B. Heterotrophic
C. Prokaryotic
D. Unicellular
15. Four clear glass jars are filled half-way with water and half-way with a mixture of carbon dioxide and oxygen. No food is placed in the jars. Organisms from four different kingdoms are placed separately into the four jars. The jars are sealed and placed in direct sunlight for six months. After this period the jars are checked to see if there are living inhabitants. Which classification of organisms lacks the characteristics necessary to survive the conditions in the jar for six months?
A. Fungi
B. Plantae
C. Photosynthetic eubacteria
D. Algae
16. Which example lacks the basic structures of a living organism and cannot metabolize or maintain homeostasis?
A. A strep throat bacteria
B. A cold virus
C. A green algae
D. A yeast
17. A certain kingdom's members are always multi-celled autotrophs, and thus, have chloroplasts for sugar production. Cell walls, composed of cellulose, surround the cells of these organisms. Identify this kingdom.
A. Algae
B. Fungi
C. Plantae
D. Protista
18. Which of these criteria are used to classify organisms into the modern classification system?
A. Diet
B. Life span
C. Similarities to fossils
D. The habitat in which they live
19. An important difference between viruses and living cells is that viruses
A. Cannot reproduce outside of cells
B. Contain more nuclei than cells
C. Cannot mutate but cells can
D. Need an energy source but cells do not
20. Experimental Observation

1. Nucleus is present
2. Cell wall is present
3. Chloroplasts and mitochondria are both present

The eukaryotic organism described above should be classified as
A. An animal
B. A bacterium
C. A fungus
D. A plant
21. Unlike plants, fungi cannot make their own food because they do not have
A. Roots
B. Hyphae
C. Spores
D. Chlorophyll
22. Which pair of structures best shows that plant cells have functions different from animal cells?
A. Cytoplasm and mitochondria
B. Chloroplasts and cell walls
C. Nuclei and centrioles
D. Ribosomes and cell membranes
23. When an animal eats, food stays in the stomach for a period of time. When a unicellular organism, such as
Paramecium, takes in food, the food is contained in which organelle?
A. Chloroplast
B. Mitochondrion
C. Nucleus
D. Vacuole

RADIOACTIVITY ANTICIPATION GUIDE

Name: \qquad Date: \qquad
Directions: You will be learning about radioactivity. BEFORE WE BEGIN, read statements below and decide if you think they are true or false. Put a check next to each statement in the "Before" column under either "True" or "False". You will then perform two activities on Radioactive Decay. After the two activities you will re-evaluate each statement and mark "True" or "False" in the "After" column. Note: You may change your initial opinion or keep it the way it is.

Before			Statement		
				After	
True	False		True	False	
		Half-life is the amount of time it takes half of the atom in the isotope to decay to a new element. Half- life happens instantly.			
		Nuclear fission happens when charged atomic nuclei join together to form a heavier nucleus while nuclear fusion is the process whereby the nucleus of a particular heavy element splits into two nuclei.			
	Nuclear energy has great potential for practical applications.				
		Nuclear reactions convert matter into energy through the process of radioactive decay, fission and fusion.			

Phase Change Stations Labs

STATION 1
 Ice, Ice, Baby

Teacher note: At this station, place a beaker that is about halfway filled with ice. Set this up a few minutes ahead of time so that the ice has some time to melt, leaving some ice and some water in the beaker.

Materials:
Beaker
Thermometer- Laser or Traditional
Ice

Instructions

1. The ice in beaker \#1 is changing phase. Draw a picture showing what is happening to the motion of the molecules as the ice changes phase.
2. Check the temperature of the ice/water mixture. What do you think will happen to the temperature as the ice turns to water?
3. Shoot the outside of the bottom of the beaker with the laser thermometer (or use a traditional thermometer). Record the temperature.
4. Shoot the outside of the top of the beaker at the point where the ice is just turning to water (or use a traditional thermometer). Record the temperature.

Phase Change Stations Labs

STATION 2
 Colored Molecules?

Teacher note: Students will be able to observe how temperature affects the rate at which the particles disperse due to molecular motion.

Materials:
2 Beakers, 1 with water at room temperature, 1 with cold water
Food coloring
Timing device
Instructions
One of these beakers contains room temperature water and the other contains cold water.

1. Place 2 drops of food coloring in the room temperature water and time how long it takes for the water to completely turn color. Write it down.
2. Place 2 drops of food coloring in the cold water and time how long it takes for the water to completely turn color. Write it down.
3. Write an explanation of the effect temperature has on how fast particles move.

STATION 3
 What Can the Matter Be?

Teacher note: This station is set up as an "observation only" station. Students will be able to observe boiling, evaporation, condensation, and precipitation.

Materials:

- Beaker of water on hotplate that is continuously boiling.
- Ring stand and ring with a small piece of glass placed on top of the ring directly over the boiling water on the hotplate (approximately 6 inches apart)

Instructions

1. Draw a diagram of the experimental set-up and describe the evidence that you can see that a phase change is taking place. Identify in your diagram where you see this evidence.
2. Draw a diagram showing the motion of the molecules as they go through each phase change.

Twizzlers Lab- ½ Life

Materials:

1 Twizzlers
Graph paper
Timer
1 Pair of Scissors

Instructions:

Before beginning, draw an X and a Y axis on your graph paper. Label the Y axis "amount" and the X axis "Time".

1. Hold the "undecayed" Twizzler vertically against the Y axis with one end at the origin. Mark the length. This represents the beginning amount. See photo below.

2. Make several equally space marks on the X axis. Each mark represents 30 seconds.
3. The teacher announces "TAKE A BITE"! Each student must eat HALF the length of the Twizzler or cut it in half.
4. Record the new Twizzler length on your graph at the 30 seconds mark.
5. After 30 seconds repeat step 3 until the Twizzler can no longer be halved, taking a bite every 30 seconds.
6. Finish graphing your results.

Analysis/Conclusions

1. Did the Twizzler ever completely disappear? Explain.
2. What is the half life time of your radioactive Twizzler? Explain.
3. If you had started with a Twizzler twice as long, how would that affect the shape of the resulting graph? Explain.
4. How would your graph look if each $1 / 2$ life took 60 seconds?

Half Life Matrix: Example Problem

How many grams of iodine 131 (half life- 5 days) would be left after 20 days if you start with 25 grams? Answer: 1.56 g

The half life is			5 days
Number of half- lives passed	Amount of Matter		Time
$\mathbf{0}$	Started with	$\mathbf{2 5} \mathbf{g}$	$\mathbf{0}$
$1 \quad$ days \} \}			

Half Life Calculations Cards

Card \#1

Problem
How long will it take 600 grams of Plutonium 239 (half life 24,000 years) to decay to 18.75 grams?
A. 120,000 yrs.
B. $24,000 \mathrm{yrs}$.
C. 3 half-lifes
D. 600 yrs

Calculation Template

The half life is			days	
Number of half- lives passed	Amount of Matter		Time	
$\mathbf{0}$	Started with	0		
1	How Much is left	How Much is left	How Much is left	
2	How Much is left	How Much is left		
3				
5				
4				

Card \#2

Problem

K-42 has a half-life of 15.5 hrs . If 13.125 g of $\mathrm{K}-42$ remains undecayed after 62.0 hours, what was the original sample size?
A. 26.25 g
B. 39.36 g
C. 52.5 g
D. 13.125 g

Calculation Template

The half life is			days
Number of halflives passed	Amount of Matter		Time
0	Started with		0 \qquad
1	How Much is left		
2	How Much is left		
3	How Much is left		
4	How Much is left		
5	How Much is left		

Card \#3

Problem

An isotope of cesium (cesium-137 has a half -life of 30 years. If 20 mg of cesium-137 disintegrates over a period of 90 years, how many mg of cesium- 137 would remain?
A. 5 mg
B. 10 mg
C. 20 mg
D. 2.5 mg

Calculation Template

The half life is		days	
Number of half- lives passed	Amount of Matter		Time
$\mathbf{0}$	Started with	0	
1	How Much is left		
2	How Much is left	How Much is left	
3	How Much is left	How Much is left	
4			
5			

Card \#4

Problem

Thallium-208 has a half-life of 3 min . How long will it take for 120.0 g to decay to 7.50 g ?
A. 6 min .
B. 9 min .
C. 3 min .
D. 1.5 min .

Calculation Template

The half life is			$\begin{gathered} \text { days } \\ \hline \text { Time } \end{gathered}$	
Number of halflives passed	Amount of Matter			
0	Started with			$\{\quad\}$
1	How Much is left			
2	How Much is left			
3	How Much is left			
4	How Much is left			
5	How Much is left			

Card \#5

Problem

If 60 g of Lithium-9 has a half-life of 100 years, how long will it take for lithium- 9 to decay to 15 g ?
A. 400 yrs.
B. 300 yrs.
C. 200 yrs .
D. 100 yrs .

Calculation Template

The half life is			days
Number of halflives passed	Amount of Matter		Time
0	Started with		0 \qquad
1	How Much is left		
2	How Much is left		
3	How Much is left		
4	How Much is left		
5	How Much is left		

Review Questions 6
 Half Life and Phases of Matter

1. What fraction of carbon- 14 will remain after it has decayed for 3 half-lives?
A. $1 / 16$
B. $1 / 2$
C. $1 / 4$
D. $1 / 8$

Use the diagram below to answer questions 2-4.

1 Kilogram of Water Heating

2. Between points 4 and 5 , energy is being used to change water from a
A. solid to a liquid
B. solid to a gas
C. liquid to a gas
D. liquid to a solid
3. Between points 3 and 4 the water is in which of the following states?
A. solid
B. liquid
C. gas
D. liquid and gas
4. Between which points would you expect to receive the worst burns?
A. 3 and 4
B. 4 and 5
C. 5 and 6
D. 4 through 6
5. Which of the following changes occurs as a solid is heated?
A. The kinetic energy of the solid decreases.
B. The average density of the solid increases.
C. The specific heat capacity of the solid decreases.
D. The average molecular speed in the solid increases.
6. Carbon-14 has a half-life of approximately 5,700 years. Analysis of the carbon in a piece of charred wood found in an excavation revealed that the carbon has 25 percent of the amount of carbon-14 that is found in the carbon of living trees. Which of the following is most nearly the age of the excavated wood?
A. 160 years
B. 5,700 years
C. 11,400 years
D. 23,000 years
7. See the figure below

The particles are moving most quickly in the:
A. Ice in the bowl
B. Drops of water on the bowl
C. Steam under the bowl
D. Water inside the teapot
8. Which of the following correctly describes molecules of two different gases if they are at the same temperature and pressure?
A. They must have the same mass.
B. They must have the same velocity.
C. They must have the same average kinetic energy.
D. They must have the same average potential energy.
9. A sample of Francium-212 will decay to onesixteenth its original amount after 80 minutes. What is the half-life of francium212?
A. 10 min .
B. 20 min .
C. 30 min .
D. 80 min .
10. The graph below represents changes in molecular motion in a solid plastic cylinder over time.

These changes in the molecules of the plastic cylinder must be accompanied by which of the following?
A. an increase in mass
B. a decrease in volume
C. an increase in temperature
D. a decrease in heat capacity
11. Which arrangement correctly shows the molecular movement for the phases of water, going from the slowest to fastest (least amount of kinetic energy to the greatest amount of kinetic energy)
A. Gas-Liquid-Solid
B. Liquid-Gas-Solid
C. Solid-Liquid-Gas
D. Solid-Gas-Liquid
12. In which of the following situations would water molecules have the least energy?
A. when water is frozen as ice
B. in a mixture of ice \& water
C. when water is boiling
D. when water is superheated steam
13. Which ONE of the following is a TRUE statement?
A. In the gas state, molecules move around freely.
B. Liquids do not change shape easily.
C. Gas molecules move more slowly as they are heated.
D. Plasma is the most common state of matter found on Earth.
14. How long does it take a 180 g sample of Au198 to decay to $1 / 8$ its original mass?
A. 1 half-life
B. 2 half-lifes
C. 3 half-lifes
D. 4 half-lifes
15. Health officials are concerned about radon levels in homes. The half-life of radon-222 is 3.82 days. If a sample of gas contains 4.38 micrograms of radon-222, how much will remain in the sample after 15.2 days?
A. 27 mg
B. .54 mg
C. 2.19 mg
D. .27 mg

Thursday, June 17

Objective

Domain: Cells and Heredity

- Students explain the process of inheritance of genetic traits.
- Students demonstrate understanding of Mendel's Laws in genetic inheritance and variability.

Time	Activity/Task	Assessment
	The Perfect Pet-	
The teacher distributes pictures of animals (one per student) as		
the students enter the class (see the animal cards in Thursday's		
June 17 materials section). Students will be told that this is their pet. They need to get to know it, name it if desired, and make a list of its characteristics. Students are to answer the question, "If you could genetically alter your new pet what one change would	Students complete a list of characteristics for	
their animal and a		
list of pros and		
cons for their		
partner's animal.		

you make and why?"
Students are to exchange their lists with partners. Instruct them to write pros and cons of the changes their partners made. Conduct a class discussion of changes made by the students and the pros and cons of having those changes in that animal.
Mendel's Lans

Mendel's Laws

Watch the video segment Gregor Mendel's Rules of Heredity: Using Punnett Squares from United Streaming and complete the video comprehension sheet (see Mendel and Punnett Squares video comprehension sheet in Thursday's, June 17 materials section).

Genetics Basics
Students will each receive a baggie with the manipulative pieces
for the Genetics Basics activity (see the Genetics Basics Activity in Thursday's, June 17 materials section). Review basic genetics
10 min vocabulary and have students manipulate the pieces to demonstrate an understanding of all vocabulary terms, i.e. "show me an example of homozygous dominant genes" etc.
Have students work the genetics problems included with this activity (see Genetics Basics Problems in Thursday's, June 17 materials section).

Students
complete their Punnett square activity and solve the Genetics Basic problems.

Thursday, June 17 (continuation)				Activity/Task	Assessment
Time	Hidden Page Foldable You get What You See or do You? One strategy to help students grasp the meaning of phenotype and genotype and the differences between them is through the aid of a "hidden" page. Allow students to make the pamphlet with the hidden page (See instructions in Thursday's, June 17 materials section). After completion of the hidden page allow students to glue a large magazine picture on the inside of the pamphlet. (Note: Cut the outside dimensions of the picture to fit the inside of the pamphlet. Then cut the picture in half and glue in place. See the pictures in the Thursday's, June 17 materials section.) Ask students to write "Phenotype" over the picture. Then have them list as many characteristics as they can observe about the animal in their picture. This would be a good place to review the terms dominant traits and recessive traits in relation to phenotype. Open the pamphlet to the hidden page. Ask students to label this page with the heading "Genotype". Ask students to record information about the genetics of their animal that they can't see. The back of the pamphlet can be used for questions about genetics such as completing a Punnett square.				
20 min					

Thursday, June 17 (continuation)

Objective

Domain: Cells and Heredity

- Students discuss the use of DNA technology in the fields of medicine and agriculture.

	Biotechnology as seen Today On a T-chart students will record the pros and cons of using biotechnology in medicine and agriculture. The teacher will lead a discussion in a Think-Pair-Share format (3 minutes each sharing- student to student, pair to pair, and large group) The teacher will distribute a bag of pictures of genetically altered medicine, plants and animals to students (See Biotechnology as seen Today in Thursday's, June 17 materials section.) The teacher will ask students to record, under a Comments section on their T- charts, their opinions, knowledge, and/or experiences with medicines and agricultural products that have been genetically altered using biotechnology. The teacher needs to facilitate the groups' discussions making sure that each student has a chance to participate. Students need to support/defend their positions using their pros and cons from their T-charts.	Students will complete their T- charts and share their answers
20 min	Review Questions 7 Provide students with a set of questions (see Review Questions 7 handout in Thursday's, June 17 materials section) about Mendel's laws and the use of biotechnology. Give them 15 minutes to answer the questions individually. Conduct a group discussion of the answers to the questions. Ask the students to correct their answers if necessary provide an explanation for the correction. The explanation must state the original reason the student chose the wrong answer and what makes the answer choice correct.	Student questionnaire

Thursday, June 17 (continuation)

Objective

Domain: Energy Transformations

- Students investigate and describe molecular motion as it relates to thermal energy changes in conduction, convection, and radiation.

Time	Activity/Task
15 min	What's going On? Prior to class the teacher should prepare the lab for student observations. Fill one cup with cold water and the other cup with warm water. (Safety reminder: Hot water from the tap is sufficient.) Using twist ties; tie a square of chocolate onto the handle of each spoon and place one spoon in each of the two cups. Place a thermometer in each of the cups. As students enter the classroom ask them to make observations without touching, and to record their findings. Observations should include similarities and differences. The teacher leads a discussion on what the students observed.

Students record observations and participate in discussion with warm water. (Safety reminder: Hot water from the tap is

	Energy Transformations I

The teacher performs the demonstration; Convection, Conduction and Radiation, as her tool for explicitly teaching these concepts. (See Convection, Conduction and Radiation in Thursday's, June 17 materials section.)
15 min Students should either sketch a diagram or write a paragraph describing what they observed and provids a possible explanation to the result of the demonstration in their notebooks.
Students should write their hypotheses on chart paper on the wall to be discussed at the end of the class.

Heat Transfer Concept Building
Ask the students to complete the Heat Transfer Basic Concepts organizers (see Heat Transfer Basic Concepts organizers in Thursday's, June 17 materials section). After a reasonable amount of time ask students to work with a classmate and compare their answers. Close the activity by directing a discussion on each concept. Encourage the students to revise and correct their work, if necessary, based on the results of the classroom discussion
Teacher note: Make sure that you emphasizes that

- heat transfer occurs by conduction, convection, and radiation into cooler places
- different substances absorb different amounts of heat before their temperature changes
- temperature can change as heat is being transferred

Foldable-check for correct understanding

Thursday, June 17 (continuation)

Objective

Domain: Energy Transformations

- Students investigate and describe molecular motion as it relates to thermal energy changes in conduction, convection, and radiation.

Time	
	St
20 min	C

Activity/Task
Conduction, Convection, and Radiation Foldable Activity
Students will complete the foldable activity (See Conduction,
Convection, and Radiation Foldable in the Thursday's, June 17
Materials Section).

Assessment

Heat Transfer Manipulative
The teacher will give each student a bag containing the Heat Transfer Manipulative activity. (See Heat Transfer Manipulative in Thursday's, June 17 materials section.)
Students should lay the three terms conduction, convection, and

Students will complete the manipulative and participate in the discussion radiation at the top of the table and place the pictures and
20 min descriptions under the correct term that describes the type of heat transfer shown.
Students will work independently to complete the activity and then check with a partner. The teacher will monitor the activity and pair sharing. The teacher will then lead a large group discussion of the activity.

Energy Transformation Manipulative
The teacher will give each student a bag containing the Energy Transformation Manipulative activity. (See Energy Transformation Manipulative in Thursday's, June 17 materials section.)

Students will complete the manipulative and participate in the discussion
20 min Students will place beside each picture of an energy transformation a label indicating what energy change took place within the system.
Students will work independently to complete the activity and then check with a partner. The teacher will monitor the activity and pair sharing. The teacher will then lead a large group discussion of the activity

Review Questions 8
Provide students with a set of questions (see Review Questions 7 handout in Thursday's, June 17 materials section) about energy transformation and heat transfer. Give them 15 minutes to answer the questions individually.
15 min
Conduct a group discussion of the answers to the questions. Ask the students to correct their answers if necessary providing an explanation for the correction. The explanation must state the original reason the student chose the wrong answer and what makes the answer choice correct.

Student questionnaire

Video Viewing Summary
Name: \qquad Date: \qquad
Instructions:
Write your answer to the following questions based on Gregor Mendel's Rules of Heredity: Using the Punnett Squares video that you just watched.

What are traits?	

Basic Genetics Activity (Continuation)

Basic Genetics Activity (Continuation)

GENETICS BASICS

Practice Problems

PROBLEM 1

In dogs, wire hair (A) is dominant to smooth (a). In a cross of a homozygous wire-haired dog with a smooth-haired dog, what will be the phenotype of the F_{1} generation?

What would be the genotype?

GENETICS BASICS

Practice Problems

PROBLEM 2

Woodrats are medium sized rodents with lots of interesting behaviors. You may know of them as packrats. Let's assume that the trait of bringing home shiny objects (A) is controlled by a single locus gene and is dominant to the trait of carrying home only dull objects (a). Suppose two heterozygous individuals are crossed.
a. How many of each genotype would be expected if only 4 offspring were produced?
AA \qquad

Aa \qquad
aa \qquad
b. How many of each phenotype brings home shiny objects?
AA \qquad

Aa \qquad
aa \qquad
c. How many of each phenotype brings home dull objects?
AA \qquad Aa \qquad
aa \qquad

GENETICS BASICS
Practice Problems

PROBLEM 3

The common grackle is a species of robin-sized blackbirds that are fairly common over most of the United States. Suppose that long tails (A) were dominant to short tails in these birds. A female short-tailed grackle mates with a male long-tailed grackle who had one parent with a long tail and one parent with a short tail.
a. What is the male's genotype?
b. How many of each genotype will be found in the F_{1} generation (assume 4 offspring)?

AA \qquad
Aa \qquad aa \qquad
c. How many of each phenotype will be found in the F_{1} generation?

Long Tail \qquad Short Tail \qquad

Hidden Page Foldable

Instructions:

a. Fold a piece of paper in half "hamburger style" (see picture a).
b. Fold the two sides back towards the center (see picture b). You should now have a "W".
c. Return the side folds to their original positions (see picture c).
d. Holding your paper on the fold, cut a line in the middle of the paper from the fold to the creased mark made in step b.
e. Make two additional cuts halfway between the middle cut and the outside edges (see picture d).
f. Open the sheet of paper (see picture e).
g. Cut two strips of paper such that each one fits through the slots made by the cuts made on step e.
h. Weave a strip of paper that has been previously cut to fit through $1 / 2$ of the slotted area. Weave the second strip of paper in the opposing remaining slots (see picture f).

(c)

Example of the final product

Front View

Inside View 1

Georgia Department of Education
Hidden Page Foldable (continuation)
Inside View 2

chromosomes:
a coiled structure pt DNA and protein that forms in the cell nucleus during. cell.
do minant.

$$
B \& \text { the trait }
$$

observed when at least
one dominant allele for
one character istic is inherited.

Genes: segments
of $O N A$ that carry hereditary instructions and are passed from pane nt to off spins

- located on churnosmmer
recessive: a ${ }^{\text {a }}$ $b b$ - that is ap parent on k when 2 recessive alleles for the ane intherdictedic

Pairs of Chromosomes

Inside View 3

Genetics Problems Manipulatives 1

In areas of the very deep and damp southeastern United States lives a giant flying cockroach known as a Palmetto bug. Assume that long antennae (A) are dominant to short antennae (a). Supposed that a homozygous recessive male mates with a short antennae female. What are the possibilities for their offspring? What are the genotypic and phenotypic possibilities for the F1 generation?

P	

GENOTYPE
PHENOTYPE

Genetics Problems Manipulatives 2

Kelp, a large, multi-cellular type of algae, has air bladders in the blades to help them float near the surface of the ocean where they can get more sunlight. Assume that having many air bladders (A) is a dominant trait. What would the offspring possibilities be of two heterozygous individuals?

Review Questions 7
 Mendel's Laws and Biotechnology

1. Which explains how the advantage of genetic variation through sexual reproduction occurs?
A. One of each pair of chromosomes comes from each parent.
B. The union of sperm and egg occurs during meiosis.
C. Meiosis occurs in all body cells also.
D. Division of body cells results in a greater variety of traits.
2. Why is meiosis important?
A. The process allows an organism to reproduce asexually.
B. The process produces two cells identical to the parent cell.
C. The process produces cells with half the normal number of chromosomes.
D. The process causes a fertilized egg to multiply and develop into an embryo.
3. Which of the following would be an important advantage of sexual reproduction over asexual reproduction?
A. more variation among offspring
B. the production of more offspring
C. the quicker development of offspring
D. the protection of the offspring by the parent
4. The process of asexual reproduction forms offspring from
A. a single organism
B. the process of mating
C. male and female parents
D. the joining of two sets of chromosomes
5. Which is an example of cloning?
A. taking leaf cuttings from a houseplant and growing new plants from them
B. transferring pollen from one flower to another
C. conjugation of two paramecia
D. none of these
6. A normal cell formed by fertilization, containing two copies of each chromosome, one from the mother and one from the father, is
A. diploid
B. haploid
C. a gamete
D. an allele
7. Scientists use artificial pollination to develop new kinds of flowers, fruits, and vegetables. This type of selective breeding produces new varieties called
A. dicots
B. hybrids
C. predators
D. monocots
8. The curled ears of the American Curl cat are caused by an autosomal dominant allele. What are the chances of a heterozygous female and a homozygous recessive male producing offspring with curled ears?
A. 1 in 4
B. 2 in 4
C. 3 in 4
D. 4 in 4
9. An animal combines DNA from two parent organisms through sexual reproduction. Organisms that do NOT exchange genetic material must rely on what for new traits?
A. Meiosis
B. Mutation
C. Hemolysis
D. Cross breeding
10. Artificial selection is human intervention allowing only the best organisms to produce offspring. How is this process most useful to humanity?
A. It allows the development of new species not dependent on the environment
B. It allows geneticists to emphasize desirable traits in food, plants, and animals.
C. It prevents the development of new species.
D. It gives the existing species a better chance to reproduce in greater numbers.
11. Read the passage and answer the question. The French biologist Cuenot crossed wild, gray-colored mice with white (albino) mice. In the first generation, all were gray. From the many litters of the second generation, 223 were gray and 72 were white. What principle of genetics is demonstrated by the data?
A. Codominance
B. Crossing over
C. Dominance
D. Epistasis
12. During sexual reproduction, traits pass from parents to offspring. The meiosis phase allows chromosomes to
A. Remain constant in number after fertilization
B. Fluctuate in number with environmental changes
C. Increase in number from the previous generation
D. Remain constant in number from parent to offspring
13. The process of meiosis, which is a special kind of cell division, forms gametes for
A. Growth
B. Repair
C. Replacement
D. Reproduction
14. What happens during meiosis?
A. The number of chromosomes increases from haploid to diploid
B. The number of chromosomes decreases from diploid to haploid
C. There is a segregation of dominant and recessive genes
D. There is an integration of dominant and recessive genes
15. Few of Wendy's chromosomes are identical to those of either parent because most of the genes on them have been exchanged with genes on other chromosomes. What process accounts for this?
A. Independent assortment
B. Crossing over
C. Nondisjunction
D. Segregation
16. Which describes a current use of genetic engineering?
A. Indentifying hereditary diseases
B. Vaccinating a child for measles
C. Making human insulin using bacteria
D. Treating cancer with radiation therapy
17. An organism that is capable of passing on a trait for a specific disease to its offspring, but which does NOT express the disease itself, is described as which of the following?
A. A carrier
B. A homozygote
C. A mutant
D. A purebred
18. A normal cell formed by fertilization, containing two copies of each chromosome, one from the mother and one from the father, is
A. Diploid
B. Haploid
C. A gamete
D. An allele
19. The observed trait that appears in an organism as a result of its genetic makeup is called the organism's
A. Allele
B. Genotype
C. Phenotype
D. Karyotype
20. Genetic information for a breed of chicken is shown below.
Frizle Fowl

Types of Chickens with Different Feathers	
Genotype	Phenotype
FF	Normal (Normal feathers)
Ff	Frizzle fowl (Curly feathers)
ff	Feather shedder (Loses feathers easily)

Which of the following crosses of chickens will produce only Frizzle fowl offspring?
A. Normal X Frizzle fowl
B. Frizzle fowl X Frizzle fowl
C. Normal X Feather shedder
D. Feather shedder X Feather shedder

Conduction, Convection, Radiation Foldable Activity

Instructions:

i. Have students take a piece of construction paper and fold it 'hotdog' style (see picture a).
ii. Cut two slits to the fold line to create three flaps.
iii. On those flaps, have students write the words "conduction", "convection", and "radiation" along with a picture representing each type of thermal energy transfer.
iv. Using the information given by the teacher during direct instruction, have students write the definition given and in their own words on the inside of each flap.
v. On the inside bottom, students should include general information about energy transfer that was given during direct instruction.

Picture a

Heat Transfer Manipulatives

When hot air in a hot air balloon is heated, the balloon rises.	If you observe a pan of boiling spaghetti, you will see the spaghetti rise and fall in the water.	You leave a spoon in hot soup and the spoon gets hot too.
The sun feels warm on your skin.	You place your hand in water and it feels warm.	You place your hand in water and it feels cold.

CONVECTION	RADIATION
CONDUCTION	

LIGHT	ELECTRICAL
THERMAL	MECHANICAL
CHEMICAL	SOUND
LIGHT	ELECTRICAL
THERMAL	MECHANICAL
CHEMICAL	SOUND

Review Questions 8
 Energy Transformation and Heat Transfer

1. Which of the following changes occurs as a solid is heated?
A. The kinetic energy of the solid decreases.
B. The average density of the solid increases.
C. The specific heat capacity of the solid decreases.
D. The average molecular speed in the solid increases.
2. Which system shows a transformation from chemical to electrical and light energy?
A. A car battery causes the headlights to shine.
B. A candle burns and lights up the room.
C. A display of fireworks in the night sky.
D. An avalanche rolls down a steep mountain.
3. Which of the following most correctly explains the flow of thermal energy in the picture below?

A. gas to a liquid
B. a liquid to a solid
C. a warmer region to a cooler region
D. a freezing material to a boiling material
4. A hang glider is able to sail through the air on warm winds which are heated by Earth's surface. This best illustrates one use of which principle of heat transfer?
A. conduction
B. convection
C. radiation
D. solar transfer
5. The sun's heat reaches Earth by what means?
A. convection
B. conduction
C. collision
D. radiation
6. The transfer of heat energy by heat traveling through a metal is known as
A. Conduction
B. Convection
C. Radiation
D. Reflection
7. When you put ice in a drink to cool it off
A. coldness is transferred from the ice to the warmer drink
B. heat is transferred from the warmer drink to the cooler ice
C. eat from the ice is lost to the warmer liquid around it
D. the ice cracks and releases cold air molecules which cool off the drink
8. The gasoline used in a car and the hamburger you ate for lunch, have which of the following similarities?
I. Both materials contain potential energy stored in their chemical bonds.
II. Both materials have complex compounds containing carbon.
III. The combination of either material with oxygen requires a net consumption of energy.
A. I only
B. III only
C. I and II only
D. I, II, and III
9. Although we rarely notice or think about it, we observe and use some of the basic principles of chemistry every day. The following questions ask you to consider some basic chemistry in the context of a camping trip. Before the camp fire is completely burned out, you ask your friend to get some more firewood. Jokingly, your friend asks why you cannot burn the ashes. Which of the following best explains why you cannot burn the ashes?
A. The stored chemical energy of the firewood has already been released
B. The kinetic energy of the wood has already been changed to chemical energy
C. The volume of the ashes is less than the volume of the wood burned
D. The temperature of the ashes in the fire is too high
10. Which energy transformation takes place when a match is struck against the side of a matchbox and bursts into flames?
A. electrical energy to light energy
B. Heat energy to kinetic energy
C. chemical energy to heat energy
D. Potential energy to electrical energy
11. While sitting next to a campfire, Susan noticed several different forms of energy being transformed from the potential chemical energy of the wood. She correctly named all of the following forms of energy except
A. Heat
B. Nuclear
C. Light
D. Sound
12. As a car is slowed, most of its kinetic energy is converted by the brakes to
A. potential energy
B. electrical energy
C. thermal energy
D. chemical energy
13. The best example of an object that possesses potential energy is
A. a rock sitting on the cliff
B. a falling rock
C. a rolling ball
D. a burning log
14. The potential energy of an object decreases as its \qquad increases
A. Velocity
B. kinetic energy
C. volume
D. mechanical
15. While listening to your CD player, there are several different forms of energy being transformed from the chemical energy of the battery. Which of the following types of energy is the chemical energy that is not being transformed to another type?
A. Heat
B. Sound
C. Nuclear
D. Kinetic
16. As a basket ball is thrown up in the air, the kinetic energy \qquad while the potential energy \qquad
A. increases, increases
B. decreases, decreases
C. decreases, increases
D. increases, decreases
17. The amount of thermal energy stored in an object depends on
A. the mass of the object
B. the temperature of the object
C. the amount of energy that the particular material stores per degree of temperature
D. the amount of thermal energy depends on all of the above

Friday, June 18

Objective

Domain: Cells and Heredity

- Students differentiate how organisms from different kingdoms obtain, transform, and transport, energy and/or material.
- Students understand the relationships between single-celled and multi-celled organisms, on a broad, conceptual level.

Time	Activity/Task	Assessment
15 min	Warm-up Activity Divide students into groups of four. Give each group a sheet of chart paper and a marker. Have students list the basic requirements that all living things share and explain how energy is involved in each process. One person from each group presents information and short class discussion. Ask each group to discuss what they know about the properties of water and how water is involved with energy in an organism. Instruct each group to write their ideas on their chart paper. Teacher Note: The purpose of this activity is to pre-assess student knowledge and to identify misconceptions.	Group charts and participation in the group discussion.
	Water and Life	Video handout.

Watch the video segments Why Is Water Essential to Life on Earth? and Water and Plants: A Unique Relationship from Unitedstreaming. Ask the students to complete the Water and Life video reflection handout. (See Water and Life video reflection handout in Friday's, June 18 materials section)
15 min Use the video segments Cell Membrane: Homeostasis, Cell Membrane: Diffusion and Cell Membrane: Active Transport to illustrate the importance of water in cellular processes. Review questions for these three videos are also in the Water and Life video reflection handout. Allow students the opportunity to share answers from the video handouts with each other to check for accuracy. Go over the information with students.

Photosynthesis and Respiration
Ask the students to complete the sentence stems under the "what I

Complete the activity.

5 min already know" column of the Photosynthesis and Respiration Information handout. (See Photosynthesis and Respiration Information handout in Friday's, June 18 materials section).

Friday, June 18 (continuation)

Objective

Domain: Cells and Heredity

- Students differentiate how organisms from different kingdoms obtain, transform, and transport, energy and/or material.
- Students understand the relationships between single-celled and multi-celled organisms, on a broad, conceptual level.

Time	Activity/Task	Assessment
20 min	Photosynthesis and Respiration Photosynthesis and Respiration flashcards (See Photosynthesis and Respiration flashcards in Friday's, June 18 materials section). Pair students and have them create the equation for photosynthesis. Teacher note: Explain to the students that they will be studying the process of photosynthesis and respiration at a cellular level. Then have each pair reorganize the cards for cellular respiration and compare the processes in their notes. Have students complete a Venn diagram for photosynthesis and respiration. (See Photosynthesis and Respiration Venn diagram in Friday's, June 18 materials section). Review with students for accuracy.	Student's notes. Completing the Photosynthesis and Respiration Venn diagram
20 min	Photosynthesis Activity Divide the students in groups of three and provide them with the organizational charts for light dependent and light independent photosynthesis and one bag with the chart pieces (see Photosynthesis chart and pieces in Friday's, June 18 materials section). Ask the students to put the pieces in the order that they think they should go. Watch the video Photosynthesis from Unitedstreaming and complete the Photosynthesis video information handout (see Photosynthesis video information handout in Friday's, June 18 materials section).	Completion of ingarts and video handout.
20 min	Photosynthesis -self evaluation Based on the information from the video ask the students to review their organizational charts and make any changes that they may consider necessary. On the board or in a sheet of chart paper draw the same organizational charts that the students have and working together fill out the information. Ask the students to copy the information in their notebooks and complete the sentence stems under the "what I found out" column to evaluate understanding. (See Photosynthesis and Respiration Information handout in Friday's, June 18 materials section).	Reflection piece Participation in the classroom discussion
150 min	Progress Assessment See Practice test materials in the Friday's, June 18 material section.	

	Why is water so important for life?

Photosynthesis and Respiration Flash Cards

Georgia Department of Education

Optional Phrases for Venn Diagram

Involves chemical reactions
Occurs in chloroplasts
Occurs in mitochondria
Produces glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
Produces $\mathrm{H}_{2} \mathrm{O}$
Requires enzymes
Used by all organisms
Used by animals
Used by plants
Uses CO_{2}
Uses O_{2}

Involves energy
Converts energy from one form to another
Involves an electron transport chain
Light independent reactions (Calvin Cycle)
Light dependent reactions
Requires chlorophyll
Traps light energy
Produces CO_{2}
Produces O_{2}
Aerobic or anaerobic
Glycolysis

Photosynthesis Pieces

Light is absorbed by chlorophyll in plant leaves.	Energy from light is transferred to electrons in chlorophyll and other plant pigments.	Water molecules are split.
Oxygen molecules are formed (O_{2}).	Oxygen is released from plant leaves.	Hydrogen ions accumulate inside thylakoids setting up a concentration gradient that provides energy to make ATP \& NADPH.
ATP \& NADPH provide the energy for the light independent reactions.	A carbon from a molecule of CO_{2} is added to a 5^{-} Carbon compound.	The resulting 6-carbon compound splits into two 3-carbon compounds.
One of the 3-carbon compounds is used to make carbohydrates such as starch, cellulose, \& glucose for plant growth.	The other 3-carbon compounds are used to regenerate the initial 5carbon compound.	These reactions may occur without light.
Light is absorbed by chlorophyll in plant leaves.	Energy from light is transferred to electrons in chlorophyll and other plant pigments.	Water molecules are split.
Oxygen molecules are formed (O_{2}).	Oxygen is released from plant leaves.	Hydrogen ions accumulate inside thylakoids setting up a concentration gradient that provides energy to make ATP \& NADPH.
ATP \& NADPH provide the energy for the light independent reactions.	A carbon from a molecule of CO_{2} is added to a 5^{-} Carbon compound.	The resulting 6-carbon compound splits into two 3-carbon compounds.
One of the 3-carbon compounds is used to make carbohydrates such as starch, cellulose, \& glucose sucrose for plant growth.	The other 3-carbon compounds are used to regenerate the initial 5carbon compound.	These reactions may occur without light.
Photosynthesis is now complete with the release of oxygen in the light dependent reaction and the creation of glucose in the light independent reaction.	Photosynthesis is now complete with the release of oxygen in the light dependent reaction and the creation of glucose in the light independent reaction.	

| | Which organisms have the ability to
 carry out photosynthesis? |
| :--- | :--- | :--- |

Practice Test

1. Which occurrence is a major source of the gases that can produce acid rain?
A. a hole in the ozone layer
B. burning of fossil fuels
C. cloud-seeding by airplanes
D. emissions by nuclear reactors
2. Cells use passive and active transport to move materials across cell membranes in order to maintain a constant internal environment. What is the process of maintaining a constant internal environment called?
A. diffusion
B. evolution
C. homeostasis
D. respiration
3. Which of the following examples illustrates osmosis?
A. Water leaves the tubules of the kidney in response to the hypertonic fluid surrounding the tubules.
B. Digestive enzymes are excreted into the small intestine.
C. White blood cells consume pathogens and cell debris at the site of an infection.
D. Calcium is pumped inside a muscle cell after the muscle completes its contraction.
4. The observed trait that appears in an organism as a result of its genetic makeup is called the organism's
A. allele
B. genotype
C. phenotype
D. Karyotype
5. Unlike prokaryotic cells, eukaryotic cells have the capacity to
A. assemble into multicellular organisms
B. establish symbiotic relationships with other organisms
C. obtain energy from the Sun
D. store genetic information in the form of DNA
6. An undisturbed deer population grows until its carrying capacity is reached. Which of the graphs below BEST resembles this deer population?

7. Which of the following practices is MOST likely to slow the buildup of CO_{2} in the atmosphere?
A. increased use of tropical rain forest areas for agriculture
B. increased use of genetically engineered plants
C. decreased pesticide use in favor of biological controls
D. decreased use of fossil fuels
8. Humans have had a tremendous impact on the environment. What has caused an increase in the amount of acid rain?
A. use of chlorofluorocarbons
B. use of pesticides
C. coal burning power plants
D. nuclear power plants
9. Which of the following is a primary function of carbohydrates?
A. storage of energy
B. transmission of genetic material
C. acceleration of chemical reactions
D. transport of molecules across membranes
10. Genetic information usually flows in one specific direction. Which of the following best represents this flow?
A. DNA \rightarrow Protein \rightarrow RNA
B. Protein \rightarrow RNA \rightarrow DNA
C. RNA \rightarrow Protein \rightarrow DNA
D. DNA \rightarrow RNA \rightarrow Protein
11. Which of the following is an example of codominance in genetic traits?
A. A tall pea plant and a short pea plant produce tall pea plants.
B. An orange cat and a black cat produce an orange-and-black kitten.
C. A blue-eyed man and a brown-eyed woman produce a blue-eyed child.
D. A color-blind woman and a man with normal vision produce a color-blind son.
12. A cell has a defect that results in the loss of its ability to regulate the passage of water, food, and wastes into and out of the cell. In which of the following cell structures is this defect most likely to be located?
A. ribosomes
B. chloroplasts
C. cell membrane
D. endoplasmic reticulum
13. The algal cell picture below is a single-celled organism.

When the algal cell is cut in two as shown, the bottom part can grow into a complete cell, but the top part cannot. What conclusion does this support?
A. The ribosomes are found in the top of the cell.
B. The nucleus is found in the bottom of the cell.
C. The top of the cell contains most of its chromosomes.
D. The bottom of the cell contains most of its cytoplasm.
14. The diagram below shows some of the feeding relationships in a desert food web.

Which of the following trophic levels is not shown in this diagram?
A. producers
B. decomposers
C. primary consumers
D. secondary consumers
15. A mutation that prevents a maple tree from efficiently taking gases from the air would most directly affect which of the following processes
A. reproduction
B. photosynthesis
C. water uptake
D. DNA replication
16. As you move from left to right across a row of elements in the periodic table, what happens to the number of neutrons in a typical atom?
A. It stays the same.
B. It increases.
C. It decreases.
D. It decreases until you reach the middle and then it increases.
17. Which of the following could be used to convert light energy to electrical energy?
A. a windmill
B. a chemical storage battery
C. a solar cell
D. rotating coils in a magnetic field
18. In a restaurant kitchen, lamps are used to keep food warm. Which type of electromagnetic radiation do the lamps emit that is primarily responsible for keeping the food warm?
A. gamma
B. infrared
C. ultraviolet
D. visible
19. Carbon atoms can link themselves together into long chains and rigs to form a vast number of highly complicated molecules. Which of the following statements BEST explains why carbon atoms behave this way?
A. They easily form ionic bonds with each other.
B. They easily form covalent bonds with each other.
C. They easily combine with atoms of oxygen.
D. They easily become highly charged ions.
20. Which of the following situations violates the law of conservation of energy?
A. A ball, dropped from the top of a building, increases in speed until it hits the ground.
B. A block sliding freely on level ice increases in speed until it hits a wall.
C. A child playing on a swing moves fastest at the bottom of the swing's path.
D. The height a ball bounces decreases with each bounce.
21. Aluminum oxide, $\mathrm{Al}_{2} \mathrm{O}_{3}$, is produced by combining Al^{3+} and O^{2-} particles. What type of compound has been formed?
A. covalent
B. ionic
C. metallic
D. molecular
22. Which of the following pairs are isotopes of the same element?
E. atom J (27 protons, 32 neutrons) and atom L (27 protons, 33 neutrons)
F. atom Q (56 protons, 81 neutrons) and atom R (57 protons, 81 neutrons)
G. atom V (8 protons, 8 neutrons) and atom W (7 protons, 8 neutrons) atom
H. $\quad \mathrm{S}$ (17 protons, 18 neutrons) and atom T (18 protons, 17 neutrons)
23. An ionic bond typically forms between certain types of elements. Which pair of elements will form an ionic compound?
A. Na and Cu
B. K and Cl
C. Ne and O
D. Li and Mg
24. Albert stirs a mug of hot chocolate with a metal spoon. What type of heat transfer is responsible for the spoon getting hot?
A. conduction
B. convection
C. thermoelectric
D. radiation
25. A student connects three identical light bulbs in a parallel to a dry cell as shown below. What happens when the student removes one of the light bulbs from its socket?

A. All the light bulbs go out.
B. The other light bulbs remain on and will be equally bright.
C. The other light bulbs remain on, one less bright and the other the same brightness as before.
D. The other light bulbs remain on, one brighter and the other less bright than before.
26. Which of the following are transferred or shared when two atoms react chemically?
27. In the absence of air resistance, which of these objects will fall at the fastest rate when dropped?

A. the ball with a mass of 75 kg
B. the ball with a mass of 25 kg
C. the ball with a mass of 10 kg
D. They all fall at the same rate.
28. Which pair of elements is MOST similar?
E. $\quad \mathrm{Ca}$ and F
F. Na and Cl
G. Ne and Ar
H. Li and H
29. A box of weight W is lifted by a force F using a lever as shown below.

What is the mechanical advantage of the lever?
A. $\frac{1}{2}$
B. 2
C. 3
D. 6
E. protons
F. neutrons
G. electrons
H. photons
30. An airplane in level flight is acted on by four basic forces. Drag is air resistance, lift is the upward force provided by the wings, thrust is the force provided by the airplane's engines, and weight is the downward force of gravity acting on the airplane.

In level flight at constant speed, which pair of forces must be equal
A. lift and drag
B. drag and weight
C. lift and weight
D. thrust and lift
31. Pat measures a small rubber ball and then makes three other balls of the same diameter from lead, foam, and wood. Which ball has the greatest inertia?
A. the rubber ball
B. the lead ball
C. the foam ball
D. the wood ball
32. A sound wave is produced and begins to travel from left to right through four different media. The speed of the wave varies as it travels. The media are solid, liquid, gas, and vacuum, but not necessarily in that order.

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
344	5000	1450	No
$\mathrm{m} / \mathrm{sec}$	$\mathrm{m} / \mathrm{sec}$	$\mathrm{m} / \mathrm{sec}$	transmission

Which speed MOST likely represents a gas?
A. 1
B. 2
C. 3
D. 4
33. A car was sitting in sunlight all day long. The heat that is now contained in the car was transferred to the car primarily by which of the following processes?
A. convection
B. conduction
C. radiation
D. electrical energy transfer
34. Four identical light bulbs are connected in a circuit as shown below.

The current is greatest through which of the light bulbs?
A. 1
B. 2
C. 3
D. 4
35. What property of electromagnetic waves makes it possible to use these waves to transmit information between a space shuttle and NASA mission control centers on the ground?
A. Electromagnetic waves are transverse waves.
B. Electromagnetic waves have very low velocity.
C. Electromagnetic waves are all visible to human eyes.
D. Electromagnetic waves can travel through a vacuum.
36. Which of the following is certain to change as a ball accelerates?
A. mass of the ball
B. inertia of the ball
C. velocity of the ball
D. force acting on the ball
37. The diagram below shows two aluminum spheres

Aluminum sphere A contains a small negative charge and is touched by aluminum sphere B, which has a larger negative charge. Which of the following occurs next?
A. Protons flow from sphere B to sphere A.
B. Protons flow from sphere A to sphere B.
C. Electrons flow from sphere B to sphere A.
D. Electrons flow from sphere A to sphere B.
38. The chart below shows a portion of the electromagnetic spectrum.

Garmma	X-rays	Ultraviolet	Visible	Infrared	Microwave	Radio

A plastic filter is fitted over a light. The light emits white light, but the filter only lets the longest wavelengths of visible light pass through. Which color would a person looking at the filtered light see?
A. green
B. red
C. violet
D. yellow

39 A party shop delivers helium-filled balloons to homes and businesses. The owners realize from experience that on hot summer days they should inflate the balloons only three-quarters full. On cold winter days they can fully inflate the balloons. Which of the following is the best hypothesis to explain this observation?
A. The helium gas is more active in the winter season.
B. Air outside the balloons leaks into the balloons.
C. As the temperature increases, the helium in the balloons expands.
D. Outdoor air pressure in the summer is less than indoor air pressure.
40. The diagram below shows a sea star in various stages of regeneration.

What cellular process is directly responsible for this regeneration?
A. meiosis
B. mitosis
C. transpiration
D. respiration
41. The diagram below shows an energy pyramid.

Approximately how much energy is available to the secondary consumers in this energy pyramid?
A. $\quad 10 \mathrm{kcal} / \mathrm{m}^{2} /$ year
B. $100 \mathrm{kcal} / \mathrm{m}^{2} /$ year
C. $1,000 \mathrm{kcal} / \mathrm{m}^{2} /$ year
D. $5,000 \mathrm{kcal} / \mathrm{m}^{2} /$ year
42. DNA and RNA are similar because the both contain
A. deoxyribose
B. nucleotides
C. thymine
D. double helices
43. The diagram below shows a food web.

Which population would probably increase if the tadpole population decreased?
A. herons
B. alligators
C. fish
D. algae
44. Many animals have internal or external skeletons that provide support and structure. Which of the following parts of plant cells play a similar role?
A. cell membranes
B. cell walls
C. chloroplasts
D. cytoplasm
45. The picture below shows two dogs and their puppies.

The parent dogs are each heterozygous for two traits: fur color and white spotting. Both parent dogs are solid black. Their puppies, however, have four different phenotypes as listed below.

- solid black
- black with white spots
- solid red
- red with white spots

Which of the following explains how these parent dogs can produce puppies with these four phenotypes?
A. The genes for these traits are sex-linked.
B. The genes for these traits mutate frequently.
C. The genes for these traits assort independently.
D. The genes for these traits are on the same chromosome.
46. A student heated a 10 g sample of a compound in an open container. A chemical reaction occurred. The mass of the sample was measured again and found to be less than before. Which of the following explains the change in mass of the sample?
A. The heat caused the compound to become less dense.
B. The reaction gave off more heat than was added.
C. Some of the lighter atoms were converted to energy.
D. One of the reaction products was a gas.
47. Which of the following represents a pair of isotopes?
A. ${ }^{1} \mathrm{H}$ and ${ }^{3} \mathrm{H}$
B. ${ }^{16} \mathrm{O}^{2-}$ and ${ }^{19} \mathrm{~F}^{1-}$
C. ${ }^{40} \mathrm{~K}$ and ${ }^{40} \mathrm{Ca}$
D. ${ }^{16} \mathrm{O}^{2-}$ and ${ }^{32} \mathrm{~S}^{2-}$
48. The water from hot springs near the Ebeko volcano in the Pacific Ocean has a very low pH .
A low pH indicates which of the following about the water?
A. It has no detectable H^{+}or OH^{-}ions.
B. It has equal concentrations of H^{+}and OH^{-}ions.
C. It has high concentrations of H^{+}ions.
D. It has equal numbers of positive and negative ions.
49. The illustration below shows four containers. Each container is full of helium gas at a different temperature.

If all of the containers are closed and have a pressure of 1 atm , which container has helium particles with the greatest average kinetic energy?
A. 1
B. 2
C. 3
D. 4
50. While hiking through Granville State Forest, a student finds an unusual plant-like organism that appears to lack chlorophyll. When the student examines a sample using a microscope, he sees many cells with cell walls and no chloroplasts.
This organism is most likely a member of what Kingdom?
a. Animalia
b. Eubacteria
c. Fungi
d. Protista

Practice Test
Answer Sheet

Name:

Question

1. (A) (B) (C) (D)
2. (A) (B) (C) (D)
3. (A) (B) (C) (D)
4. (A) (B) (C) (D)
5. (A) (B) (C) (D)
6. (A)
(B)
(C) (D)
7. (A) (B) (C) (D)
8. (A) (B) (C) (D)
9. (A) (B) (C) (D)
10. (A) (B) (C) (D)
11. (A) (B) (C) (D)
12. (A) (B) (C) D
13. (A) (B) (C) (D)
14. (A) (B) (C) (D)
15.

(A) (B) (C) (D)
16. (A) (B) (C) (D)
17. (A) (B) (C) (D)
18.
19. (A) (B) (C) (D)
20.
(A) (B) (C) (D)

Question
21. (A) (B) (C) (D)
22. (A) (B) (C) (D)
23. (A) (B) (C) (D)
24. (A) (B) (C) (D)
25. (A) (B) (C) (D)
26. (A) (B) (C) (D)
27. (A) (B) (C) (D)
28. (A) (B) (C) (D)
29. (A) (B) (C) (D)
30. (A) (B) (C) (D)
31. (A) (B) (C) D
32. (A) (B) (C) (D)
33. (A) (B) (C) (D)
34. (A) (B) (C) (D)
35. (A) (B) (C) D
36. (A) (B) (C) D
37. (A) (B) (C) (D)
38. (A) (B) (C) (D)
39. (A) (B) (C) (D)
40. (A) (B) (C) D

Question
41. (A) (B) (C) (D)
42. (A) (B) (C) (D)
43. (A) (B) (C) (D)
44. (A) (B) (C) (D)
45. (A) (B) (C) (D)
46. (A) (B) (C) (D)
55. (A) (B) (C) (D)
56. (A) (B) (C) (D)
57. (A) (B) (C) (D)
58. (A) (B) (C) (D)
59. (A) (B) (C) (D)
60. (A) (B) (C) (D)

Science Facts And Formulas

Some of the questions in this test require you to solve problems. This page contains all the basic facts and formulas you will need to solve those problems. You may refer to this page as often as you wish while you take the test. Some questions may require information from the periodic table on the previous page.

Basic Facts

- Acceleration due to gravity $=9.8$ meters $/$ second $/$ second $\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
- Weight $=$ Mass $(m) \times$ Acceleration due to gravity $(g)(W=m g)$
- Density = Mass/Volume
- \quad Volume of a Rectangular Solid $=$ Length \times Width \times Height $(V=l w h)$
- 1 Newton = 1 kilogram $\cdot \mathrm{meter} /$ second/second
- 1 joule $=1$ Newton \cdot meter
- 1 watt $=1$ Newton \cdot meter $/$ second $=1$ joule/second

Motion

Velocity $(V)=V_{0}+a t$,
Where $V_{0}=$ Initial Velocity, $a=$ Acceleration, and $t=$ Time

$$
\text { Acceleration }=\text { Change in Velocity/Time Elapsed } \quad\left(a=\frac{V-V_{0}}{t}\right)
$$

Force

Force $=$ Mass \times Acceleration $\quad(F=m a)$

Mechanical Advantage

Actual Mechanical Advantage: $\quad\left(A M A=\frac{F_{R}}{F_{E}}\right)$
Where F_{R} is Force due to resistance and F_{E} is Force due to effort.
Ideal Mechanical Advantage: $\quad\left(\right.$ IMA $\left.=\frac{\text { EffortLength }}{\text { ResistanceLength }}\right)$

Work

Work $=$ Force \times Distance $(W=F \cdot d)$

Electricity

Voltage $=$ Current \times Resistance $(V=I \cdot R)$

